
In Secure Software Testing, you’ll start by taking a big-picture look at modern software testing practices.
Then you’ll learn how to test your source code during development. Following that, you’ll see how you can
incorporate secure testing strategies in the later stages of testing. And finally, you’ll look at secure testing
strategies you can use later in the software development lifecycle.

Security Software Testing is designed to improve the communication between junior software
developers, managers, and application security professionals. This course addresses issues related
to proper testing of software for security, including the overall strategies and plans. Learners will
gain an understanding of the different types of functional and security testing that should be
performed, the criteria for testing, automated tools for testing, and disaster recovery.

COPYRIGHT 2022

Tailored learning - 75 minutes total (approx.)

Course Learning Objectives

Description

Audience Time Required

Junior Developers
Managers

CSP105 - SECURE SOFTWARE TESTING

CSP105 - SECURE SOFTWARE TESTING

COPYRIGHT 2022

Course Outline

1. Planning for Security
 Testing

• The goals of security testing
• Testing for failure
• Testing that mitigations work
• Testing known attack types
• More testing for high-value code
• Make a test plan
• Test strategy
• Test plan
• Create a security-forward test plan
• Include security test cases
• Describe how to record issues in
 the test report
• Pinpoint your focus with threat
 modeling
• Implement testing throughout the
 SDLC
• Background
• Role of automation
• Automation goal

4. Penetration and System
 Testing

• Hardening your security posture
• Whole system view
• Configuration
• Penetration testing
• Availability testing
• Considerations of late-stage testing
• Use pen tests to find real-world
 vulnerabilities
• The stages of pen testing
• Knowledge check
• Supplement testing with a web
 security scanner
• Passive scan
• Manual scanning
• Use stress tests to improve resiliency
• Application-level DoS attacks
• Outside resources
• Nonlinear performance degradation
• Unbounded code
• Use fault injection to test mitigations
• Use disaster recovery tests to
 guarantee safety
• Disaster recovery test metrics

2. Testing Code

• The evolution of testing
• The patch-and-penetrate model
 weaknesses
• Testing early
• Understand testing approaches
• Opaque-box testing
• Clear-box testing
• Opaque-box vs. Clear-box testing
• Translucent-box testing
• Knowledge check
• Use static analysis
• Choosing a code scanner
• Incorporating a code scanner
• Use unit tests
• When to run unit tests
• How to choose good test cases
• Consider test-driven development
• Set a test coverage goal
• Fuzz testing
• Security regression tests
• Newsflash: Apple reintroduces
 vulnerability

3. Testing Applications

• What comes after unit testing
• Integration testing
• System testing
• Penetration testing
• Use negative scenarios
• Negative scenario examples
• Test for vulnerabilities
• Assess and document all failures
• Knowledge check
• Use automated HTTP testing for
 web apps
• Advantages
• Tools for automating web testing
• Automated UI testing
• Automated UI testing example

