
OAuth Security Fundamentals begins with discussing the problems that OAuth solves and takes a
high-level look at how OAuth delegation works. From there, you’ll learn how to implement an OAuth flow
for a server-side web application, how to implement OAuth in a client-side browser application, and how
to implement OAuth flows in native applications. And finally, you’ll learn how OpenID Connect extends
OAuth with user identity features.

OAuth Security Fundamentals spans five modules. This course is designed for Security Architects
and Software Developers. It is recommended that all learners are familiar with the security
fundamentals of authentication and authorization, as described in the OWASP Top 10.

COPYRIGHT 2022

Tailored learning - 90 minutes total (approx.)

Course Learning Objectives

Description

Audience Time Required

Security Architects
Software Developers

OAU201 - OAUTH SECURITY FUNDAMENTALS

OAU201 - OAUTH SECURITY FUNDAMENTALS

COPYRIGHT 2022

Course Outline

1. Laying the Groundwork

• About
• Delegated access with OAuth
• Advantages of OAuth
• Evaluate if OAuth is suitable for
 your needs
• Identify the type of client for
 implementing OAuth
• Examples of different clients
• Identifying client
• Choose the correct OAuth flow
• Building a public client
• Building a private client
• Consider OpenID Connect (OIDC)
 for authentication

* Optional interactivity

4. Securing Native Apps

• Native applications and OAuth
• Use the Authorization Code Flow
 for native apps
• Example: An authorization request
 with AppAuth
• Use a custom URI scheme for
 redirects
• Claimed HTTPS URIs
• Do not embed a browser view
• Use the system browser
• Use the Device Flow for devices
 with limitations
• The Device Flow

5. Adding OpenID Connect

• What OAuth wasn’t created for
• OIDC overview
• When should you use OIDC?
• Using OIDC instead of custom
 authentication
• OIDC Authorization Code
• Scopes
• User consent
• Token exchange
• Handle the ID token
• ID token structure
• Validating the signature
• Verifying the ID token
• Best practices with ID tokens

* Optional interactivity

2. Securing Server-Based Web
 Apps

• Registering a client application
• The OAuth registration process
• A registration example with
 Google APIs
• The client ID and client secret
• Using the authorization code flow
• Choosing an OAuth library
• Example: The authorization
 request
• Example: The authorization
 process
• Example: The redirect
• Example: The token request
• Example: Authorized access
• Handle tokens securely
• Hardening the OAuth flow
• Use the Client Credentials Flow if
 the user isn’t present

3. Securing Client-Side Web
 Apps

• Avoid the implicit flow
• Using the authorization code flow
 with PKCE
• How PKCE works
• Using PKCE
• Using the state parameter
• Don’t store access tokens on the
 client
• Limitations
• Consider a “backend for frontend”
 approach

