

6 Steps to Getting Started with

Software Security Requirements

Copyright © 2017 Security Compass.

SECURITY COMPASS WHITEPAPER 2017

Copyright © 2017 Security Compass. 1

INTRODUCTION

There are many benefits to implementing a Software Security Requirements program, including:

• Lowering costs to build secure software

• Making security measurable

• Turning unplanned work into planned work

• Freeing up time away from remediation, and into feature development

• Having a single process that works with in-house, outsourced, and commercial software

• Providing confidence that software is secure, when requirements are linked to verification

This guide provides 6 simple steps to get you started on building a Software Security Requirements

program.

The steps are as follows:

1. Define your goals for adopting such a program.

2. Select a repository for your re-usable requirements.

3. Determine the sources for your requirements.

4. Add requirements to your repository.

5. Build a list of application properties.

6. Deploy requirements to development teams.

Copyright © 2017 Security Compass. 2

1. DEFINE YOUR GOALS FOR ADOPTING A SOFTWARE SECURITY
REQUIREMENTS PROGRAM

Here are some common ones:

• Lower application security risk: You view application security as a key area of risk, and see

software security requirements as a tool to help reduce that risk.

• Lower cost of application security remediation: You want to specify security requirements up-

front, thereby reducing the need to fix vulnerabilities after they’ve been identified.

• Improve compliance: You wish to use software security requirements to improve compliance to

and auditability of a particular regulation.

• Understand application risks: You wish to understand the types of risks affecting applications,

including risks that existing assessment techniques may be unable to uncover.

• Disseminate guidance across the organization: You wish to centrally manage software security

and other non-functional requirements and automatically push them to other teams or into

other organizational processes.

• Increase security of 3rd party developed software: You wish to generate detailed technical

security requirements for 3rd party software suppliers.

Copyright © 2017 Security Compass. 3

2. SELECT A REPOSITORY FOR YOUR RE-USABLE REQUIREMENTS

A static document is not sufficient for managing software security requirements. Some sort of filtering

mechanism, such as a priority, is essential for getting adoption from time-crunched developers.

Here are a few common options:

Repository Type Pros Cons

Spreadsheet

• Cheap

• Easy to get started

• Low fidelity

• Not centralized

• Hard to maintain

• No integration

Sharepoint or Internally Developed

Application

• More advanced than
spreadsheet

• Possibility of integration with
custom development

• Hard to maintain

• May be expensive to develop

Commercial Software Security

Requirements solution

• Extensive features

• Integration with development &
security tools

• Access to continuous and up-to-
date requirements from
vendor’s researchers

• Integrated training

• Requires securing budget &
buy-in from other stakeholders

https://blog.securitycompass.com/4-reasons-why-developers-dont-read-secure-programming-guides-33acf5280708

Copyright © 2017 Security Compass. 4

3. DETERMINE THE SOURCES FOR YOUR REQUIREMENTS

Here are a few examples:

• Compliance regulations: If compliance to standards such as PCI DSS is driving your software

security requirements gathering program, then you should reference those compliance

initiatives and include any code-level issues in your list of requirements.

• Internal corporate standards: You may have some existing corporate standards for areas like

password management and encryption, so you’ll want to at least reference these in your

requirements library.

• Secure development practices: Your internal development teams may have a document with

code samples to address well-known weaknesses. You may want to augment these samples and

best practices with the information available online:

o OWASP Secure Coding Practices – Quick Reference Guide: A PDF/Word doc of concise

secure coding practices that can easily be used as requirements.

o OWASP Application Security Verification Standard (ASVS): A large set of verification

requirements for web applications. While ASVS standards are not requirements, you can

generally reverse engineer the corresponding requirement from each verification

standard.

o Common Weakness Enumeration (CWE): The most comprehensive set of software

security weaknesses available. You will need to invest a significant amount of time if you

wish to cover the breadth of the CWE. Also, CWE weaknesses do not necessarily cover

countermeasures, so you will need to determine the countermeasure for each weakness

yourself.

If you elect to use a commercial Software Security Requirements solution, the vendor is responsible for

monitoring external sources of security requirements. A mature Software Security Requirements

solution will allow you to supplement its list of requirements with your own corporate standards and

code samples.

https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Referenc
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
http://cwe.mitre.org/data/

Copyright © 2017 Security Compass. 5

4. ADD REQUIREMENTS TO YOUR REPOSITORY

Based on the sources you selected from step 3, build a re-usable repository of software security

requirements.

Include the following information for each requirement:

• Requirement title: Title to describe the requirement.

• Requirement description: A short abstract of what the requirement is. Remember developers

are often time-crunched, so keep the description short and link to more detailed information if

you need to.

• Vulnerability description: A brief description of what vulnerability the requirement is mitigating,

so that developers know why they need to perform this action.

• Base risk or priority: A number to help teams understand how urgent the requirement generally

is.

• Verification: how can somebody verify that this requirement has been implemented?

• Inclusion Rule: When is this requirement relevant to an application? What application

properties need to be true? These rules are best implemented using boolean logic.

For example, a requirement which protects against certain database attacks “Bind

variables in SQL statements” might apply to all applications where the application property

“Uses SQL database == TRUE”. Keep track of all of the properties you reference in these

rules.

• In Excel, the rules can be made up of simple formulas that reference the sheet containing

properties.

• In a custom app or SharePoint site, the rules can be configured using hard-coded logic.

• In a commercial Security Requirements Management solution, requirements should already be

populated and updated by the vendors. You will have the ability to overwrite rules if you wish to

customize them.

Copyright © 2017 Security Compass. 6

5. BUILD A LIST OF APPLICATION PROPERTIES

These properties should be based on those identified in step 4 (i.e. “Uses SQL database” in the example

above).

Some common properties are:

• Application type (e.g. web application, mobile application, etc.)

• Uses SQL database

• Exposes RESTful web services

• Exposes SOAP web services

• Uses passwords for authentication

• Stores / transmits / processes credit card data

With a set of application properties and requirements tied to these properties you can

generate a tailored list of software security requirements for an application.

6. DEPLOY REQUIREMENTS TO DEVELOPMENT TEAMS

Provide the development teams with the requirements tool, from which they should be able to generate

a specific set of software security requirements that applies to their applications. They can then add

these requirements to their standard requirements gathering process. A recommended final step is to

collect feedback and evaluate against the goals you outlined in step 1.

Copyright © 2017 Security Compass. 7

ABOUT SD ELEMENTS

Our award-winning policy-to-execution platform, SD Elements, addresses applications’ security and

compliance requirements during the early stages of development. Powered by Ph.D. researchers, this

automation platform translates policies into actionable tasks, which can then be used by enterprise IT

and Engineering teams to meet security and compliance objectives. SD Elements allows your

organization to efficiently deliver technology that's secure by design.

https://www.securitycompass.com/sdelements/

	Introduction
	1. Define your goals for adopting A software security requirements program
	2. Select a repository for your re-usable requirements
	3. Determine the sources for your requirements
	4. Add requirements to your repository
	5. Build a list of application properties
	6. Deploy requirements to development teams
	ABOUT SD ELEMENTS

