
Complying with
Executive Order 14028
Software Security
Requirements

WHITEPAPER

2

Contents

Introduction. . 3

Supply Chain Attacks Are Growing. . 3

Executive Order 14028. . 3

The Executive Order and Authority to Operate (ATO). . 5

Secure Software Development Framework . . 5

SSDF Implications on Existing Software Development Processes 7

Shift left . . 7

Take a risk-based approach . . 7

Adopt a Common Language . . 7

How SD Elements Helps You Follow SSDF Recommendations 7

Examples: Prepare the Organization (PO). . 10

PO.1: Define Security Requirements for Software Development . . 10

PO.2: Prepare the Organization: Implement Roles and Responsibilities. 13

PO.3: Prepare the Organization: Implement Supporting Toolchains . . 14

Examples: Protect the Software (PS). . 15

PS.1: Protect All Forms of Code from Unauthorized Access and Tampering 15

Examples: Produce Well-Secured Software (PW) . . 16

PW.1: Design Software to Meet Security Requirements and Mitigate Security Risks 16

PW.4: Reuse Existing, Well-Secured Software When Feasible Instead ofDuplicating

Functionality . . 17

PW.5: Create Source Code by Adhering to Secure Coding Practices . . 18

PW.9: Configure Software to Have Secure Settings by Default . . 19

Examples: Respond to Vulnerabilities (RV). . 20

RV.1: Identify and Confirm Vulnerabilities on an Ongoing Basis . . 20

RV.2: Assess, Prioritize, and Remediate Vulnerabilities . . 21

RV.3: Analyze Vulnerabilities to Identify Their Root Causes . . 21

Next Steps. . 22

3

Introduction

Organizations that provide software to US federal agencies face new requirements regarding software
security. By early 2023, the Federal Acquisition Regulation (FAR) Council will require compliance with NIST’s
Secure Software Development Framework (SSDF). This paper helps readers understand the potential impact
of SSDF compliance on their organizations and steps they can take to meet SSDF requirements.

Supply Chain Attacks Are Growing

In December 2020, FireEye researchers discovered “a supply chain attack trojanizing SolarWinds Orion
business software updates”. The backdoor in Orion – a platform for centralized monitoring and management
of IT infrastructure – allowed the attackers full administrative access to Orion customers’ infrastructure. The
attack has been attributed to Russian nation state actors and affected over 100 private sector entities and at
least nine federal agencies, including the departments of Defense, Commerce, Energy, Justice, Homeland
Security, State, and Treasury and the National Institute of Health.

The SolarWinds attack was a supply chain compromise. A supply chain attack compromises software used by
an organization, instead of targeting an organization directly . In this case, the attacker inserted back doors
into legitimate software and waited for SolarWinds to distribute the attack through “trusted” updates.
Shortly after the SolarWinds event, a back door that affected thousands of organizations was discovered in
Microsoft Exchange (and attributed to China).

Supply chain attacks need not insert backdoors into the supply chain. They can just as effectively leverage
coding errors, misconfigurations, and other security weaknesses in commercial and open source applications
used by the targeted organizations. The end result is the same as in the SolarWinds breach - an attack vector
through which attackers can compromise an application or system.

Executive Order 14028

In light of these events, and the Colonial Pipeline ransomware attack
in early 2021, the Biden Administration issued Executive Order (EO)
14028 - “Improving the Nation’s Cybersecurity.” Included in the EO is
the requirement that “the Federal Government must take action to
rapidly improve the security and integrity of the software
supply chain.”

“The development of commercial
software often lacks transparency,
sufficient focus on the ability of the
software to resist attack, and
adequate controls to prevent
tampering by malicious actors.”

EO 14028, Section 4
May 12, 2021

https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.fedscoop.com/solarwinds-recap-federal-agencies-caught-orion-breach/
https://www.reuters.com/article/us-usa-cyber-microsoft/white-house-says-microsoft-email-hackers-have-large-number-of-victims-idUSKBN2AX23U
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

4

The EO comprises 11 sections covering topics from general policy declarations to information sharing to
improving the U.S. federal government’s investigative and remediation capabilities. In each, the EO requires
various government agencies to produce plans, policies, and guidelines within specified timeframes “to
identify, deter, protect against, detect, and respond to” threats against the public and private sectors. Section
4 – Enhancing Software Supply Chain Security – addresses the federal government’s security requirements
for software it uses.

Section 4 acknowledges that the government lacks sufficient information on
the software it procures to resist attacks and a “pressing need to implement
more rigorous and predictable mechanisms for ensuring that products function
securely.”

It includes orders to the Director of NIST to “Within 180 days…publish
preliminary guidelines…drawing on existing documents as practicable, for
enhancing software supply chain security.”

The EO prioritizes “critical software” and requires the guidelines to include
standards for several practices, including secure development environments,
using automated tools to identify vulnerabilities, and “attesting to conformity
with secure software development practices.”

Source: https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity

“The [secure software]
guidelines shall include
criteria that can be
used to evaluate
software security,
include criteria to
evaluate the security
practices of the
developers and
suppliers
themselves…”

Executive Order 14028
May 12, 2021

EO Section 4 Tasks and Timelines
Day 0 –
May 12, 2021
EO 14028 issued

Day 45 –
June 26, 2021
Publish definition of
“critical software” (4g)

Day 180 – Day 360 –
Nov 8, 2021 May 8, 2022
Publish preliminary
guidelines for enhancing
SW SC security (4c)

Publish additional
guidelines, including
review/update
procedures (4d)

Solicit input from
stakeholders (4b)

Day 30 –
June 11, 2021

Publish guidance outlining practices that enhance security measures for security of SW SC (4e) critical software (4i)
Initiate pilot programs,

Publish guidelines identifying IoT cyber &
recommending minimum secure SW development
standards for vendor practices or criteria for
testing of SW source code consumer labeling
(4r) programs (4s, 4t, 4u)

Review & submit
summary report of pilot
programs (4w)

Day 365 –
May 12, 2022

Day 60 – Day 270 –
July 11, 2021 Feb 6, 2022

Issue guidance identifying

https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity

5

The Executive Order and Authority to Operate (ATO)

The Federal Information Security Modernization Act already requires federal agencies to achieve Authority
to Operate (ATO) by having systems in place to assess and monitor security and privacy risks. This includes
compliance with NIST’s Risk Management Framework.

Organizations selling software to government agencies should expect security requirements to change and
align with the EO. Section 2 of the EO orders a review of the Federal Acquisition Regulation (FAR) and
Defense Federal Acquisition Regulation (DFAR) Supplement and recommendations to the FAR Council to
standardized contract language for cybersecurity requirements. At the request of the Department of
Defense, General Services Administration, and NASA, legislation is also in process to amend the FAR’s
cybersecurity contractual requirements across Federal agencies for unclassified information systems.

Secure Software Development Framework

The Executive Order orders NIST to identify “existing or develop new standards, tools, and best practices for
complying” with the security requirements. Fortunately, NIST had already started work on such a framework.
In 2019, NIST published “Mitigating the Risk of Software Vulnerabilities by Adopting a Secure Software
Development Framework (SSDF)” which defined secure software development practices and tasks for
software producers. The white paper included most of the itemized requirements in the EO. An update in
2021 covered the remaining items, resulting in SP 800-218, Secure Software Development Framework
(SSDF) Version 1.1: Recommendations for Mitigating the Risk of Software Vulnerabilities.

The SSDF builds from and references several other industry
efforts, including the Cloud Native Computing Foundation’s
(CNCF) Software Supply Chain Best Practices, OWASP’s
Open Software Assurance Maturity Model (OpenSAMM),
NIST’s Guidelines on Minimum Standards for Developer
Verification of Software, the Building Security In Maturity
Model (BSIMM), and SAFECode’s Fundamental Practices for
Secure Software Development.

“The SSDF presents an opportunity to
measurably improve the cybersecurity
posture of U.S. federal, state, and local
government agencies. Security Compass
embraces and contributes to this
standard.”

Rohit Sethi
CEO, Security Compass

https://www.cisa.gov/federal-information-security-modernization-act
https://resources.securitycompass.com/blog/expert-advice-on-how-to-attain-authority-to-operate-ato-faster
https://resources.securitycompass.com/blog/expert-advice-on-how-to-attain-authority-to-operate-ato-faster
https://www.reginfo.gov/public/do/eAgendaViewRule?pubId=202110&RIN=9000-AO35
https://csrc.nist.gov/CSRC/media/Publications/white-paper/2019/06/07/mitigating-risk-of-software-vulnerabilities-with-ssdf/draft/documents/ssdf-for-mitigating-risk-of-software-vulns-draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/white-paper/2019/06/07/mitigating-risk-of-software-vulnerabilities-with-ssdf/draft/documents/ssdf-for-mitigating-risk-of-software-vulns-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://owasp.org/www-project-samm/
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://www.bsimm.com/
https://www.bsimm.com/
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf

6

The SSDF is a set of high-level secure software development practices that can be integrated with an
organization’s development process. The practices are organized into four groups.

•	 Prepare the Organization (PO): Ensure that the organization’s people, processes, and technology are
prepared to perform secure software development at the organization level and, in some cases, for each
individual project.

•	 Protect the Software (PS): Protect all components of the software from tampering and unauthorized
access.

•	 Produce Well-Secured Software (PW): Produce well-secured software that has minimal security
vulnerabilities in its releases.

•	 Respond to Vulnerabilities (RV): Identify vulnerabilities in software releases and respond appropriately
to address those vulnerabilities and prevent similar vulnerabilities from occurring in the future.

7

SSDF Implications on Existing Software
Development Processes

The SSDF provides high-level secure software activities for integration into an organization’s software
development life cycle (SDLC). The activities or practices are intended to minimize the number of
vulnerabilities in software, mitigate the impact of exploits of undetected or unaddressed vulnerabilities, and
“address the root causes of vulnerabilities to prevent future recurrences.”

The SSDF does not require a specific SDLC. Its activities can be applied in waterfall, agile, or DevOps models.
It is not prescriptive in its recommendations, instead focusing on the outcome of the practices. This allows
organizations of any size or security maturity to implement and benefit from the practices. The practices can
be applied to traditional software development, IT, Internet of Things (IoT), or Industrial Control Systems
(ICS) programs.

While applicable across any SDLC, the SSDF does include several themes.

Shift left

Meeting the goal of fewer vulnerabilities can be achieved in many ways. Traditionally, organizations would run
automated scans later in the development process. This increases remediation costs and slows releases. The
SSDF encourages organizations to “shift left” and implement security activities early in the SDLC.

Take a risk-based approach

Not all projects warrant the same level of security scrutiny. Each will have different requirements, scales,
scopes, budgets, and problems. Bugs and flaws in some projects can result in devastating outcomes, while
others may present “acceptable risk” for an organization. The SSDF acknowledges that risk, cost, and
feasibility are considerations when deciding which practices to adopt for each project.

Adopt a common language

To improve communication between business owners, security teams, development, and operations, the SSDF
provides a common vocabulary to describe secure software development practices. This common language
also allows software acquirers to describe and define the required security characteristics of software in their
acquisition process. Commercial software companies can use the vocabulary to describe their security
practices to customers.

8

The SSDF provides mapping from the requirements in the EO to the practices in the SSDF to help business,
development, and security resources better communicate why specific activities are required.

How SD Elements Helps You Follow
SSDF Recommendations

As mentioned earlier, most organizations test for security by running
automated scans late in the SDLC to identify coding errors and design
flaws that could be exploited by an attacker. This “Find and Fix”
approach is reactive and slows down developers.

Identify

Potential for software weaknesses
for a given product

Plan and Prevent Find and Fix

Implement

Controls to mitigate
those weaknesses

Test

Identify vulnerabilities

Source: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

SSDF Practices Corresponding to EO 14028 Subsections

EO 14028
Subsection

SSDF Practices and Tasks

4e(i)(A) PO.5.1

4e(i)(B)(B) PO.5.1

4e(i)(C) PO.5.1, PO.5.2

4e(i)(D) PO.5.1

4e(i)(E) PO.5.2

4e(i)(F) PO.3.2, PO.3.3, PO.5.1, PO.5.2

4e(ii) PO.3.2, PO.3.3, PO.5.1, PO.5.2

4e(iii) PO.3.1, PO.3.2, PO.5.1, PO.5.2, PS.1.1, PS.2.1, PS.3.1, PW.4.1, PW.4.4

4e(iv) PO.4.1, PO.4.2, PS.1.1, PW.2.1, PW.4.4, PW.5.1, PW.6.1, PW.6.2, PW.7.1, PW.7.2, PW.8.2,
PW.9.1, PW.9.2, RV.1.1, RV.1.2, RV.2.1, RV.2.2, RV.3.3

4e(v) PO.3.2, PO.3.3, PO.4.1, PO.4.2, PO.5.1, PO.5.2, PW.1.2, PW.2.1, PW.7.2, PW.8.2, RV.2.2

4e(vi) PO.1.3, PO.3.2, PO.5.1, PO.5.2, PS.3.1, PS.3.2, PW.4.1, PW.4.4, RV.1.1, RV.1.2

4e(vii) PS.3.2

4e(viii) RV.1.1, RV.1.2, RV.1.3, RV.2.1, RV.2.2, RV.3.3

4e(ix) All practices and tasks consistent with a risk-based approach

4e(x) PS.2.1, PS.3.1, PS.3.2, PW.4.1, PW.4.4

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://www.federalregister.gov/d/2021-10460/p-60
https://www.federalregister.gov/d/2021-10460/p-61
https://www.federalregister.gov/d/2021-10460/p-62
https://www.federalregister.gov/d/2021-10460/p-63
https://www.federalregister.gov/d/2021-10460/p-64
https://www.federalregister.gov/d/2021-10460/p-65
https://www.federalregister.gov/d/2021-10460/p-66
https://www.federalregister.gov/d/2021-10460/p-67
https://www.federalregister.gov/d/2021-10460/p-68
https://www.federalregister.gov/d/2021-10460/p-69
https://www.federalregister.gov/d/2021-10460/p-70
https://www.federalregister.gov/d/2021-10460/p-71
https://www.federalregister.gov/d/2021-10460/p-72
https://www.federalregister.gov/d/2021-10460/p-73
https://www.federalregister.gov/d/2021-10460/p-74

9

A better approach is “Plan and Prevent.” In this approach, teams anticipate and identify weaknesses in the
software, frameworks, and deployment environment (plan) then implement mitigation controls for those
weaknesses during the normal development process (prevent).

By adopting a “Plan and Prevent” strategy, teams proactively avoid vulnerabilities. Security testing truly
becomes a validation exercise to confirm all required mitigation controls are properly implemented.

In many organizations, the “Plan and Prevent” exercise consists of lengthy security requirements maintained
on spreadsheets. Others may create manual threat models. Threat modeling teams can spend days mapping
an application’s data flow, diagramming trust boundaries, and prescribing mitigations for implementation by
development teams. The investment in time from scarce security and development resources limits manual
threat models to a few critical applications.

SD Elements automates the “Plan and Prevent” exercise. A brief survey provides information on the
application’s technology stack, including programming languages, frameworks, deployment environment, and
applicable regulatory requirements. SD Elements enumerates potential weaknesses from this then translates
these and other federal government security requirements into actionable tasks to be implemented by
development, security, and operations. Its integrations with development and DevOps tooling, issue trackers,
security testing tools validates that all controls are properly implemented and provides near real-time
reporting on the status of each item.

Identify

Potential for software weaknesses
for a given product

Plan and Prevent Find and Fix

Implement

Controls to mitigate
those weaknesses

Test

Identify vulnerabilities

https://www.securitycompass.com/sdelements/integrations/

1 0

SD Elements scales a “Plan and Prevent” strategy across the organization’s entire software portfolio. Its
extensive content library supports a broad range of technologies, platforms, programming languages, and
regulatory standards. Just-in-Time Training (JITT) delivered directly to developers’ desktops provides brief,
informative guidance on secure coding practices.

Examples: Prepare the Organization (PO)

PO.1: Define Security Requirements

for Software Development

The first practice in the Prepare the
Organization group (PO.1) is “Define
Security Requirements for Software
Development”: “Ensure that security
requirements for software development are
known at all times so that they can be taken
into account throughout the SDLC, and
duplication of effort can be minimized because
the requirements information can be collected
once and shared. This includes requirements
from internal sources (e.g., the organization’s
policies, business objectives, and risk
management strategy) and external sources
(e.g., applicable laws and regulations).

Identify

Plan and Prevent Find and Fix

Implement Test

SD Elements identifies potential
software weaknesses based on

a survey of the application’s
technical stack

SD Elements integrations with
testing tools confirms existence

of controls and absence of
vulnerabilities

SD Elements translates weaknessess
and government security

requirements into actionable controls
to mitigate thoose weaknesses

https://www.securitycompass.com/sdelements/content-library/

1 1

SD Elements supports two of three tasks within PO.1.

•	 PO.1.2: Identify and document all security requirements for organization-developed software to
meet and maintain the requirements over time. Examples include defining policies that specify risk-
based software architecture and design requirements, analyzing the risk of applicable technology stacks,
and defining policies that specify the security requirements for the organization’s software, and verify
compliance at key points in the SDLC

	» SD Elements automatically enumerates security requirements for an application based on a survey of
the application’s technical stack including its deployment environment and applicable regulatory
standards. It then translates those requirements into actionable tasks for development, security, and
operations. Tasks are communicated through integrations with issue trackers and other common
development tools.

1 2

•	 PO.1.3: Communicate requirements to all third parties who will provide commercial software
components to the organization for reuse by the organization’s own software. Organizations should
define a core set of security requirements for software components and ensure that the requirements
are included in all contracts. These should include vulnerability disclosure policies and incident
response capabilities.

	» For software that requires third-party libraries, organizations can mandate the software vendors
comply with a list of controls. This can be done with an export model of selected controls from the
survey, direct integration into the third party’s Jira workflow, or through a shared Jira instance.

1 3

PO.2: Prepare the Organization: Implement Roles and Responsibilities

The second practice in Prepare the Organization (PO.2) requires “Implement Roles and Responsibilities”

“Ensure that everyone inside and outside of the organization involved in the SDLC is prepared to perform their SDLC-
related roles and responsibilities throughout the SDLC.”

•	 PO.2.2: Provide role-specific training for all personnel with responsibilities that contribute to secure
development. Periodically review role-specific training and update it as needed. This task requires
organizations to document the desired outcome of training, define the curriculum, and create a training
plan for each role in the development process,

	» Security Compass offers an extensive on-demand eLearning library that supports every role in
software development and deployment. Courses for software developers, software architects, QA
engineers, and project managers cover fundamental elements of software security and language-
specific secure coding practices. Our Software Security Practitioner (SSP) Suites are pre-selected sets
of courses for specific coding languages or specific roles within the development team.

	» To reinforce secure coding training, SD Elements Just-In-Time Training (JITT) provides short videos
that support the implementation of software security and privacy requirements during development.

1 4

PO.3: Prepare the Organization: Implement Supporting Toolchains

PO.3 advocates for automation across the SDLC:

“Use automation to reduce human effort and improve the accuracy, consistency, usability, and comprehensiveness of
security practices throughout the SDLC, as well as provide a way to document and demonstrate the use of these
practices. Toolchains and tools may be used at different levels of the organization, such as organization-wide or
project-specific, and may address a particular part of the SDLC, like a build pipeline. “

•	 PO.3.3: Configure tools to collect evidence and artifacts of their support of the secure software
development practices as defined by the organization. Organizations will want traceability of all
activity, including issue tracking and validation of controls. This is useful for internal use and can also
provide evidence of compliance with SSDF to auditors and customers.

	» Unlike spreadsheet-based models that are subject to error and lack traceability, SD Elements provides
a centralized repository for all activity and full, evidentiary quality auditing for all actions. Teams have
near real-time reporting on the status of each project with granularity to individual controls.
Integrations with issue trackers allows organizations to assign and track each task for completion.
Integrations with security testing tools like static application security testing (SAST) and dynamic
application security testing (DAST) tools enable fast, consistent validation of security control
implementation status and sharing of results directly with developers.

1 5

Examples:
Protect the Software (PS)

PS.1: Protect All Forms of Code from

Unauthorized Access and Tampering

PS.1 acknowledges that building secure applications
requires organizations to protect their development
and build environments. Recent attacks on SolarWinds
and CodeCov demonstrated the disastrous impact of
poor practices.

“Help prevent unauthorized changes to code, both
inadvertent and intentional, which could circumvent or
negate the intended security characteristics of the software.
For code that is not intended to be publicly accessible, this
helps prevent theft of the software and may make it more
difficult or time-consuming for attackers to find
vulnerabilities in the software.”

•	 PS1.1: Store all forms of code, including source code
and executable code, based on the principle of least
privilege so that only authorized personnel, tools,
services, etc. have the necessary forms of access.
This includes maintaining repositories that are
protected for confidentiality and integrity, the use of
code and commit signing.

	» SD Elements’ risk mitigation controls include
recommendations for strict access control and
secure storage rules, as well as the use of
obfuscation and checksum or digitally signed
certificates to ensure that code is not tampered
with or replaced by malicious attackers during
update cycles. It provides controls for using
cryptographic functions to protect software code,
files, and business logic, and the use of back-out
positions so applications can recover from failed
changes or unexpected results.

https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://www.zdnet.com/article/codecov-breach-impacted-hundreds-of-customer-networks/

1 6

Examples: Produce Well-
Secured Software (PW)

PW.1: Design Software to Meet Security

Requirements and Mitigate Security Risks

PW.1 requires organizations to adopt a “Plan and
Prevent” strategy to anticipate weaknesses in
an application and proactively adopt risk
mitigation controls.

“Identify and evaluate the security requirements for the software; determine what security risks the software is likely
to face during operation and how the software’s design should mitigate those risks; and justify any cases where
risk-based analysis indicates that security requirements should be relaxed or waived. Addressing security
requirements and risks during software design (secure by design) helps make software development more efficient.”

•	 PW.1.1: Use forms of risk modeling, such as threat modeling, attack modeling, or attack surface
mapping, to help assess the security risk for the software. This includes identifying potential
weaknesses and using a risk-based approach to address the risks and implement mitigations.

	» SD Elements automates threat modeling, reducing the time required from weeks to hours. After the
completion of a project survey, SD Elements identifies weaknesses that threats target and enables the
delivery of mitigation controls directly to those responsible in development, security, and operations.
By anticipating threats and building mitigations as part of the normal development process, security
testing is simplified, more proactively, and easily scaled across an entire software portfolio.

1 7

•	 PW.1.2: Document the software’s security requirements, risks, and design decisions. This includes the
requirement to document the response to each risk, including how mitigations are to be achieved.

	» SD Elements’ content library includes dozens of regulatory standards and best practices frameworks
and translates these into easy-to-follow instructions for development, assurance, and deployment
teams. It can be customized to accommodate secure coding policies of an individual company or
project.

PW.4: Reuse Existing, Well-Secured Software When Feasible Instead of

Duplicating Functionality

PW.4 encourages organizations to identify and reuse “known-good” components and microservices.

“Lower the costs of software development, expedite software development, and decrease the likelihood of introducing
additional security vulnerabilities into the software by reusing software modules and services that have already had
their security posture checked. This is particularly important for software that implements security functionality, such
as cryptographic modules and protocols.“

•	 PW.4.2: Create well-secured software components in-house following SDLC processes to meet
common internal software development needs that cannot be better met by third-party software.
Secure development requirements apply equally to applications and reusable components or micro-
services.

	» SD Elements can be used on projects of any size. As a project evolves, updates to the survey will update
any required controls.

1 8

PW.5: Create Source Code by Adhering to Secure Coding Practices

PW.5 covers the core practices of building secure software. It requires organizations to consider weaknesses
that may be inherent to specific programming languages and deployment environments.

•	 PW.5.1: Follow all secure coding practices that are appropriate to the development languages and
environment. This task covers all secure coding best practices, including input validation, avoiding unsafe
functions and calls, ensuring complete logging, and code reviews.

	» SD Elements enables secure development by translating language and platform specific secure
development policies into specific tasks. A team of security experts continuously updates security
controls, including coding samples and test plans, to ensure that teams apply consistent and effective
controls. Extensive secure coding policies are included with SD Elements, or organizations can add
their own policies.

1 9

PW.9: Configure Software to Have Secure Settings by Default

PW.9 recognizes that weaknesses can enter an application from multiple points.

“Help improve the security of the software at the time of installation to reduce the likelihood of the software being
deployed with weak security settings, putting it at greater risk of compromise.”

•	 PW.9.1: Define a secure baseline by determining how to configure each setting that has an effect on
security so that the default settings are secure and do not weaken the security functions provided by
the platform, network infrastructure, or services. Misconfigurations of servers and storage can result in
data leakage and provide simple attack vectors to attackers. These settings are often missed by
automated scanners and must be explicitly confirmed by security and/or operations.

	» SD Elements’ content library includes secure configurations as well as security standards for cloud
deployments from the Cloud Security Alliance.

2 0

Examples: Respond to
Vulnerabilities (RV)

RV.1: Identify and Confirm Vulnerabilities on

an Ongoing Basis

RV.1 highlights the importance of threat awareness.
It requires organizations to monitor public sources
for newly disclosed vulnerabilities and adjust
security controls accordingly.

“Help ensure that vulnerabilities are identified more
quickly so that they can be remediated more quickly in
accordance with risk, reducing the window of
opportunity for attackers.”

RV.1.1: Gather information from purchasers, consumers, and public sources on potential vulnerabilities
in the software and third-party components that the software uses, and investigate all credible reports.
Thousands of new vulnerabilities are disclosed publicly each year. Teams should monitor vulnerability mailing
lists and other public disclosures to avoid adding simple attack vectors to their code base.

	» SD Elements’ research team monitors multiple sources to maintain timely and accurate content on
vulnerabilities and attack patterns, including CIS Benchmarks and databases for weaknesses and
vulnerabilities like CVE and CAPEC. As new vulnerabilities are disclosed (e.g., Log4shell), the research
team immediately acts and provides the necessary tasks to mitigate the vulnerability in
subsequent releases.

2 1

RV.2: Assess, Prioritize, and Remediate Vulnerabilities

RV.2 emphasizes the need to prioritize vulnerabilities using a risk-based approach. This includes remediating
vulnerabilities, risk mitigation, and risk acceptance.

“Help ensure that vulnerabilities are remediated in accordance with risk to reduce the window of opportunity
for attackers.”

•	 RV.2.2: Plan and implement risk responses for vulnerabilities. Appropriate controls can mitigate the
risk of most vulnerabilities. Having consistent, effective controls improves security and makes software
maintenance simpler.

	» SDE identifies and prioritizes vulnerabilities based on the technical stack to inform risk-based decisions
(e.g., risk acceptance, risk transference). When a permanent mitigation is unavailable, mitigations are
provided to reduce the attack risk.

RV.3: Analyze Vulnerabilities to Identify Their Root Causes

RV.3 cites the importance of continuous improvement through observation. By identifying the root cause of
vulnerabilities, teams can improve their secure coding skills.

“Help reduce the frequency of vulnerabilities in the future.”

•	 RV.3.3: Review the software for similar vulnerabilities, and proactively fix them rather than waiting for
external reports. The guidance for RV.3.3 references practices 7 and 8: Test Executable Code to Identify
Vulnerabilities and Verify Compliance with Security Requirements.

	» SD Elements provides guidelines and instructions for building processes that ensure applications meet
security verification requirements. It integrates with security testing tools like SAST, DAST, and SCA to
import the results of scanning, verify results, and automatically close some tasks.

2 2

R.V.3.3 (1) is a list of test tasks that “provides guidelines and instructions...
that ensure applications meet security verification requirements.”

R.V.3.3 (2) is the instruction in one of the test tasks.

2 3

R.V.3.3 (3) shows the integration of SDE with three verification tools.

R.V.3.3 (4) shows the list of verification tools that can be integrated with SDE.

2 4

Next Steps

EO 14028 applies specifically to organizations
providing software to US government agencies
and Authority to Operate. As commercial sector
demand grows for improved security in software
supply chains, it also provides a useful framework
for improving software security for any
organization building applications.

You can learn more about the EO and how to begin
aligning to the best practices by watching our
two-part on-demand webinar series:

•	 Part 1: Executive Order 14028: Guidelines for
Enhancing Software Supply Chain Security

•	 Part 2: Using SD Elements to Comply with US
Executive Order 14028 Secure Software
Development Recommendations

You can also speak to us about how SD Elements
can organizations building software for U.S.
federal, state, and local government agencies
adhere to SSDF recommendations.

https://resources.securitycompass.com/webinars/executive-order-14028-guidelines-for-enhancing-software-supply-chain-security
https://resources.securitycompass.com/webinars/executive-order-14028-guidelines-for-enhancing-software-supply-chain-security
https://resources.securitycompass.com/webinars/using-sd-elements-to-comply-with-us-executive-order-14028-secure-software-development-recommendations
https://resources.securitycompass.com/webinars/using-sd-elements-to-comply-with-us-executive-order-14028-secure-software-development-recommendations
https://resources.securitycompass.com/webinars/using-sd-elements-to-comply-with-us-executive-order-14028-secure-software-development-recommendations
https://www.securitycompass.com/free-demo/

Copyright © 2022 Security Compass.

TORONTO

390 Queens Quay W

2nd Floor

Toronto, Ontario

Canada M5V 3A6

GLOBAL HEADQUARTERS

1 Yonge Street

Suite 1801

Toronto, Ontario

Canada M5E 1W7

NEW JERSEY

621 Shrewsbury Avenue

Suite 215

Shrewsbury, New Jersey

USA 07702

CALIFORNIA

600 California Street

San Francisco, California

USA 94108

INDIA

#4.07

4th Floor, Statesman House

Barakhamba Road, New Delhi

India 110001

OFFICES

Go Fast. Stay Safe.

Security Compass, a pioneer in application security, enables

organizations to shift left and build secure applications by

design, integrated directly with existing DevSecOps tools and

workflows. Its flagship product, SD Elements, helps

organizations accelerate software time to market and reduce

cyber risks by taking an automated, developer-centric

approach to threat modeling, secure development, and

compliance. Security Compass is the trusted solution provider

to leading financial and technology organizations, the U.S.

Department of Defense, government agencies, and renowned

global brands across multiple industries. For more

information, please visit www.securitycompass.com.

1.888.777.2211

info@securitycompass.com

www.securitycompass.com

@ S E C U R I T YC O M PA S S

S E C U R I T Y C O M PA S S

http://www.securitycompass.com
mailto:info%40securitycompass.com?subject=
http://www.securitycompass.com
https://twitter.com/securitycompass
https://www.linkedin.com/company/security-compass

	Supply Chain Attacks Are Growing
	Executive Order 14028
	The Executive Order and Authority to Operate (ATO)
	Secure Software Development Framework
	SSDF Implications on Existing SoftwareDevelopment Processes
	Shift left
	Adopt a Common Language

	Examples: Prepare the Organization (PO)
	PO.1: Define Security Requirements for Software Development
	PO.2: Prepare the Organization: Implement Roles and Responsibilities
	PO.3: Prepare the Organization: Implement Supporting Toolchains

	Examples: Protect the Software (PS)
	PS.1: Protect All Forms of Code from Unauthorized Access and Tampering

	Examples: Produce Well-Secured Software (PW)
	PW.1: Design Software to Meet Security Requirements and Mitigate Security Risks
	PW.4: Reuse Existing, Well-Secured Software When Feasible Instead ofDuplicating Functionality
	PW.5: Create Source Code by Adhering to Secure Coding Practices
	PW.9: Configure Software to Have Secure Settings by Default

	Examples: Respond to Vulnerabilities (RV)
	RV.1: Identify and Confirm Vulnerabilities on an Ongoing Basis
	RV.2: Assess, Prioritize, and Remediate Vulnerabilities
	RV.3: Analyze Vulnerabilities to Identify Their Root Causes

	Next Steps

