
The OWASP Top 10 provides a list of common vulnerabilities in software application, and apps developed
in Android with Java or Kotlin are no exception. This course details baseline guidance for developers to
address vulnerabilities in Android apps by delving into the causes of common vulnerabilities and the
defenses to mitigate them. Developers will explore secure coding practices that defend against
weaknesses such as poor authentication, sensitive data leakage, weak cryptography, and injection attacks.

Explore defenses against common vulnerabilities in Android applications developed with Java and
Kotlin. This course covers industry best practices in secure coding as it relates to authentication and
authorization, secure data transfers, secure data storage, cryptography, and secure data ingestion

COPYRIGHT 2020

Android mobile application developers
Tailored learning - 65 minutes total

Course Learning Objectives

Description

Audience Time Required

Android application architects
Security professionals

AND201 - DEFENDING ANDROID

AND201 - DEFENDING ANDROID

COPYRIGHT 2020

Course Outline

2. Secure data transfer

• Unencrypted communications
• Improper certificate validation
• Code: Mismatched certificate
 bypass
• Secure Network Connections
• Certificate pinning
• Code: Implementing certificate
 pinning

3. Secure data storage

• Sensitive data stored in plaintext
• Sensitive data stored on a device
• Background apps
• Automatic snapshots
• Shared clipboards
• Screen recording and
 broadcasting
• Store sensitive data
• Code: Encrypt application data
 storage area
• Code: Encrypting files on the SD
 card
• Code: Storing the master key
• Code: Store sensitive data in a
 Shared Preference Object
• Android Keystore and KeyChain
• Code: Store credentials in Android
 Keystore
• Clear data for background apps
• Sanitize the snapshot screen
• Code: Disable clipboard copy and
 paste
• Code: Clear last entry on clipboard
• Mask sensitive inputs

1. Authentication and
authorization

• Authentication vs authorization
• Untrusted incoming requests
• Client-side authentication bypass
• No account lockout or throttle
• Insufficient password policy
 requirements
• Insufficient authorization
 requirements
• Integration with password
 managers
• Password management
 applications
• Suggest strong password at
 account creation
• Token management on the server
 side
• How OAuth works
• About ‘appsecret_proof’

4. Cryptography

• Insufficient pseudo random key
 generation
• Symmetric key cryptography with
 hardcoded keys
• Code: Random key generation
• Password-based key derivation
 function (PBKDF2)
• PBKDF2 in an application
• Code: Key generation
• Code: Encryption with PBKDF2
• Implementing PBKDF2
• Code: Decryption with PBKDF2

5. Secure data ingestion

• About secure data ingestion
• Client-side SQL Injection
• WebView input 1 of 3
• WebView input 2 of 3
• WebView input 3 of 3
• Keyboard data caching
• Third-party keyboards
• Parameterizing SQL commands
• Safer SQL solution
• Data cleansing against XSS
• Disable local file access
• Disable UITextField caching
• Detect third-party keyboards

