
This course has three areas of focus for software developers. The first identifies security-related
differences in Angular, and how to handle authentication, authorization, and OAuth 2.0.

The second area explains how to mitigate common injection vulnerabilities, configure and enforce
browser-based defenses, and implement best practices for deploying HTTPS.

Finally, the third part focuses on secure authentication using forms or OIDC, propagating authorization
states, and avoiding common pitfalls.

Defending Angular is divided into three parts. Part one helps software developers investigate how
the Angular development paradigm impacts security. Part two explores a set of best practices for
building, deploying, and maintaining Angular applications. And Part 3 investigates how to implement
authentication and authorization in Angular applications.

COPYRIGHT 2020

Tailored learning - 120 minutes total (approx.)

Course Learning Objectives

Description

Audience Time Required

Angular developers

ANG101 - DEFENDING ANGULAR

ANG101 - DEFENDING ANGULAR

COPYRIGHT 2020

Course Outline

1. Introduction to Angular
 security

• The server-side model
• The client-side model
• Overview of changes
• Client-side page composition
• Client-side XSS overview
• Page loads versus API calls
• Overview of authorization
 challenges
• Remote code versus dependencies
• The problem with NPM
 dependencies
• Addressing vulnerabilities in
 dependencies

2. Role of authentication and
 authorization

• Enabling authorization
• Authentication in practice
• Session management in practice
• Authorization in practice
• A modern authentication
 landscape

3. Enforcing authorization

• Authorization in Angular
 applications
• Authorization is a backend
 responsibility
• Introduction to authorization states
• Tracking authorization state
• Propagating authorization state
• Alternative solutions

4. OAuth 2.0

• The conceptual idea of OAuth 2.0
• Using OAuth 2.0 in Angular
• Challenges with OAuth 2.0
• The "backend-for-frontend"
 pattern

5. XSS

• XSS in Angular
• Refresher on XSS
• XSS in Angular applications
• Strict contextual escaping
• Sanitization
• Follow the Angular way
• Avoid bypassSecurity functions

6. Advanced XSS

• URL injection attacks
• URL injection attack example
• The problem with resource URLs
• Trusting resource URLs
• Template injection attacks
• Preventing template injection

7. Dependency management
 in Angular

• Vulnerabilities in dependencies
• Typosquatting attacks
• Compromised packages
• Targeted attacks
• Using NPM audit
• Alternative dependency checking
 tools
• Best practices for managing
 dependencies

8. HTTPS

• HTTPS for Angular applications
• Configuring HTTPS for the
 frontend
• Configuring HTTPS for the
 backend
• HTTP Strict Transport Security
• Securing your TLS configuration
• The certificate security ecosystem
• Certificate Authority Authorization
• Certificate Transparency

9. HTTP headers

• Header-based security policies
• Overview of policies
• Strict-Transport-Security
• X-Content-Type-Options
• X-Frame-Options
• Content-Security-Policy
• Latest developments in CSP
• Referrer-Policy
• Depreciated headers

ANG101 - DEFENDING ANGULAR

COPYRIGHT 2020

Course Outline

1. Introduction to Angular
 security

• The server-side model
• The client-side model
• Overview of changes
• Client-side page composition
• Client-side XSS overview
• Page loads versus API calls
• Overview of authorization
 challenges
• Remote code versus dependencies
• The problem with NPM
 dependencies
• Addressing vulnerabilities in
 dependencies

2. Role of authentication and
 authorization

• Enabling authorization
• Authentication in practice
• Session management in practice
• Authorization in practice
• A modern authentication
 landscape

3. Enforcing authorization

• Authorization in Angular
 applications
• Authorization is a backend
 responsibility
• Introduction to authorization states
• Tracking authorization state
• Propagating authorization state
• Alternative solutions

4. OAuth 2.0

• The conceptual idea of OAuth 2.0
• Using OAuth 2.0 in Angular
• Challenges with OAuth 2.0
• The "backend-for-frontend"
 pattern

5. XSS

• XSS in Angular
• Refresher on XSS
• XSS in Angular applications
• Strict contextual escaping
• Sanitization
• Follow the Angular way
• Avoid bypassSecurity functions

6. Advanced XSS

• URL injection attacks
• URL injection attack example
• The problem with resource URLs
• Trusting resource URLs
• Template injection attacks
• Preventing template injection

7. Dependency management
 in Angular

• Vulnerabilities in dependencies
• Typosquatting attacks
• Compromised packages
• Targeted attacks
• Using NPM audit
• Alternative dependency checking
 tools
• Best practices for managing
 dependencies

8. HTTPS

• HTTPS for Angular applications
• Configuring HTTPS for the
 frontend
• Configuring HTTPS for the
 backend
• HTTP Strict Transport Security
• Securing your TLS configuration
• The certificate security ecosystem
• Certificate Authority Authorization
• Certificate Transparency

9. HTTP headers

• Header-based security policies
• Overview of policies
• Strict-Transport-Security
• X-Content-Type-Options
• X-Frame-Options
• Content-Security-Policy
• Latest developments in CSP
• Referrer-Policy
• Depreciated headers

COPYRIGHT 2020

Course Outline

10. Form-based
 authentication and OpenID

• Simple authentication in Angular
• Supporting authentication in the
 backend
• A conceptual overview of OpenID
 Connect
• Using OIDC to centralize
 authentication
• Using OIDC for frontend-only
 authentication
• Choosing the right OIDC flow
• Pitfalls with implementing OIDC

11. Cookies, CSRF, and CORS

• Handling cookies
• Cookies are present on all
 requests
• Configuring cookies for HTTPS
• Preventing cookie access from
 JavaScript
• Avoid using domain-wide cookies
• Overview of current best practices
• Handling CSRF
• Examining the CSRF attack surface
• APIs must be strictly defined
• Using CORS as a CSRF defense
• Alternative CSRF defenses for APIs

12. Custom mechanisms

• Using a custom mechanism to
 propagate state
• Custom implementation with an
 Interceptor
• Restrictions on sending
 authorization state
• Overview of a custom state
 mechanism
• Using JSON Web Tokens
• Integrity protection with HMACs
• Integrity protection with digital
 signatures
• JWT library support
• Security-relevant JWT metadata
• JWTs are not session objects
• Using JWTs in a larger ecosystem

