
Best Practices to Ensure
Firmware Security

WHITEPAPER

1

When we consider software security,

we often tend to think only about

cloud and mobile applications.

What’s often missing in our

discussions is the software that exists

within hardware components,

namely firmware. In today’s world,

where attacks can occur at the

software or hardware layers, we need

to extend our traditional software

security models to include product

firmware.

There are some trends that indicate product
security is highly relevant today. We see a
proliferation of IoT devices, along with the
integration of OT and IT in critical infrastructure
or industrial environments, and the impact of
software layer breaches traced to product
firmware vulnerabilities. All of this points to the
need for us to consider the creation of secure
products that encompass both software
and firmware.

From a guidance perspective, industry standards
and frameworks like NIST 800-53 and ISA 62443
have long advocated the need for both secure
software and firmware. Even in the most recent
revision of NIST 800-53, there is continued
emphasis on software, hardware, and firmware.
Our security controls, therefore, should extend
beyond software into firmware.

From an operational standpoint, within
organizations, accountability for security
software and firmware rests with two roles. The
Chief Information Security Officer (CISO) and
the Chief Product Security Officer (CPSO)
collaborate together to ensure that security
concerns at the software and firmware layers are
properly addressed.

In order to prioritize product security concerns
appropriately, we need a repeatable process that
drives out the requirements and priorities to
focus on. This means understanding an attacker’s
motivations and current attack vectors to
determine the likelihood and impact of
a compromise.

Collecting all of this information together and
flowing it through a risk assessment process that
feeds into an overall risk management
framework with thresholds provides the
necessary information to make an informed
decision. By taking a risk-based approach, we can
focus on areas that are most relevant to the
business and manage software and firmware
security risks. In this way, we balance the
need for speed and security in line with
business priorities

https://resources.securitycompass.com/blog/cybersecurity-for-industrial-control-systems
https://resources.securitycompass.com/blog/cybersecurity-for-industrial-control-systems

2

Understanding the
motivations of a
cyberattacker

Before considering an approach to manage
software and firmware security, it’s important to
take a step back and consider why an attacker
might be interested in the firmware layer.
According to the Eclypsium 2020 report, there
are several motivations of an attacker:

• They want to achieve persistence of their
malicious code by bypassing higher levels of
operating system and application security.
They want to gain the highest levels of
privilege and thereby gain access to all parts
of the system.

• They want to execute undetected attacks
that bypass many of the logging systems that
exist on top of the firmware layer.

• They want to damage the device so that it
becomes necessary to perform a prolonged
reset or look for a physical replacement.

Given these motivations, we can better
understand the attack vectors. According to Raju
et al in their 2019 paper, Chip off IoT Devices:
Attacks and Mitigations, attacks can be targeted
at one of these three layers:

• Storage

• Hardware Communications Interface

• Network Communications Interface

As per the Microcontroller Based IoT System
Firmware Security: Case Studies by Gao et al,
there are two attack vectors:

• Internal: There is no authentication or
encryption for firmware upgrades.

• External: Access to the hardware through
common external interfaces like WiFi or
Bluetooth low energy (BLE).

Understanding an attacker’s motivations and
possible attack vectors can help us better
understand the scope of the problem and
look for proactive ways to manage the
corresponding risk.

Attack Surface

Storage Hardware Communication Interface Network Communication Interface

USB Radio Wi-FiEthernetFLASH I2Q SPI UARTJTAG/
SWD

EEPROM
SD

CARD

Source: Chip off IoT Devices: Attacks and Mitigations, 2019

https://eclypsium.com/2019/12/20/anatomy-of-a-firmware-attack/
https://www.ijrte.org/wp-content/uploads/papers/v8i2S4/B10300782S419.pdf
https://www.ijrte.org/wp-content/uploads/papers/v8i2S4/B10300782S419.pdf
https://www.cs.uml.edu/~xinwenfu/paper/Conferences/19_ICII_MicrocontrollerBasedIoTSystemFirmwareSecurity-CaseStudies.pdf
https://www.cs.uml.edu/~xinwenfu/paper/Conferences/19_ICII_MicrocontrollerBasedIoTSystemFirmwareSecurity-CaseStudies.pdf

3

Can the vulnerable
firmware layer lead to
cyberattacks?

Firmware development is often done using
low-level programming languages like C or
Assembly. These languages provide a small
footprint and enable precise control over the
hardware. Unfortunately, this also has its risks.

According to the Building Secure Firmware book
by Jiewen Yao et al, “…the C code can be
susceptible to the class of attacks that afflict
higher-level software. These attacks include
memory safety issues, involving the variants of
buffer overflow, such as stack overflow, heap
overflow, and integer overflow. In addition,
control flow attacks against C code in the
application or OS space can be repurposed
against system firmware.”

MITRE has also identified several CWEs related
to managing buffers during software
development:

• CWE-120 Buffer Copy without Checking
Size of Input (‘Classic Buffer Overflow’)

• CWE-121 Stack-based Buffer Overflow

• CWE-122 Heap-based Buffer Overflow

• CWE-124 Buffer Underwrite (‘Buffer
Underflow’)

• CWE-131 Incorrect Calculation of Buffer
Size

The good news is there are several guidance
documents and standards available to guide the
development of C programs. Operationalizing
secure C firmware development in a way that is
repeatable and consistent is an important step in
reducing the number of vulnerabilities.

Challenges with
integrating software and
hardware life cycles

When we talk about extending the secure
software development life cycle with hardware
life cycle, the challenge is trying to bridge these
two life cycles. On the software side, change is
rapid and deploying changes is relatively easy.
On the firmware side, the changes take longer to
propagate.

We interviewed some experts on
comparing the two lifecycles and
found the following common themes:

 ɓ Product security might involve
assessing the security of the whole
system, not just the software.

 ɓ It includes hardware components
as well as the interconnecting
devices, like the network
interfaces and communication
channels.

 ɓ Software security has often been
prioritized over hardware security.

 ɓ Software update life cycles are
relatively easy compared to
hardware update life cycles.

https://www.apress.com/gp/book/9781484261057

4

Since both domains contain some differences in
their approach, we need to consider a higher
level abstraction that can tie these life cycles
together. The motivation that drives both
lifecycles should come from the business. In
business discussions, the conversation often
turns toward balancing speed to market and
security risks. So both the software and
hardware lifecycles need to focus on a balanced
risk approach that enables the business to get to
market quickly and efficiently without
introducing risk beyond an acceptable threshold.

Starting with a risk-based approach

A discussion on risk should start by looking at
different standards or frameworks that are
already available. It turns out there are many
different risk assessment standards that can be
used as a starting point.

For example, ISO 31010, NIST 800-30, or SEI/
CERT OCTAVE. The goal in a risk-based
approach is to create a repeatable assessment
process that scales.

You can see a sample risk assessment process
below sourced from the book, Hacking Exposed
Industrial Control Systems, ICS and SCADA
Security Secrets & Solutions by Wilhoit et al.

Stage 1:
Asset Identification
& Characterization

1. Define Business/
Operations
Objectives

2. System
Characterization/

Classification

6. Security Policy
Review

7. Controls Analysis
(Standards Audit,

Gap Analysis)

8. Cyber
Vulnerability
Assessment

9. Threat
Assassment

10. Attack Vector
Assessment

11. Attack Tree/
Risk Scenario

Creation

12. Validate Findings

and Scenerios

(Penetration Test CVSS)

3. Asset
Identification

4. Network
Topology & Data

Flow Review

13. Calculate
Risk

14. Prioritize &
Deploy Mitigation

15. Validate
Mitigation

5. Risk
Pre-Screening

Stage 3:
Risk Calculation
& Management

Stage 2:
Vulnerability
Identification &
Threat Modeling

Source: Hacking Exposed Industrial Control Systems, ICS and SCADA Security Secrets & Solutions, 2016

https://www.slideshare.net/hopefype5701/2016-hacking-exposed-industrial-control-systems-pdf-ics-and-scada-security-secrets-solutions-by-clint-bodungen-mcgrawhill-education
https://www.slideshare.net/hopefype5701/2016-hacking-exposed-industrial-control-systems-pdf-ics-and-scada-security-secrets-solutions-by-clint-bodungen-mcgrawhill-education
https://www.slideshare.net/hopefype5701/2016-hacking-exposed-industrial-control-systems-pdf-ics-and-scada-security-secrets-solutions-by-clint-bodungen-mcgrawhill-education

5

Ultimately, we need the ability to assess risk of a
given asset (our software and firmware, in this
case) and determine the right controls to
implement in order to minimize the impact of
high-probability, high-risk outcomes. It is
important that a process be followed in order to
deliver consistency. Risk assessments based on
different processes makes comparisons difficult.

Establishing policies to guide

firmware development

Once an assessment is complete, the creation of
appropriate security policies that are actionable
becomes important. It is not enough to say that a
vulnerability exists. There must be a remediation
that is understandable to firmware developers.

According to Yao et al, there are several secure
development principles and techniques to help
build more secure firmware:

Principles

• Prevent buffer overrun

• Prevent arbitrary buffer access
and execution

• Avoid arithmetic error

• Eliminate banned functions

• Be aware of race conditions

• Take care of information leaks

• Know bad compiler optimizations

• Use ASSERT the right way

• Check input across trust boundary

• Fail intelligently

• Reduce attack surfaces

• Use least privilege

• Defense in depth

• Open design

• Remove backdoors

• Keep code simple

Techniques

• Static code analysis

• Dynamic code analysis

• Fuzzing

• Symbolic execution

• Formal verification when possible

When creating firmware code, it is essential to
provide a mechanism for developers to check
their work early and often. Contextual guidance,
along with relevant code samples can aid
developers in gaining greater confidence in their
code. Furthermore, this will help to reduce
false positives from downstream code
scanning activities.

Elicit views
from

Stakeholders

Identify
Risk

Determine
Sources,

Causes, and
Drivers of

Risk

Analyze
Controls

Understand
Consequences
and Likelihood

Select
Between
Options

Record
and

Report

ISO 31010 suggests the following process:

6

Dashboard
&

Reporting
Document

GRC System

BDA
Controls
Catalog

Document
BDA

Asset Management
System GRC System

Inventory Management

Intranet
Document

Vulnerability
Database

Asset
Management

System

Threat Libraries
Vulnerability Databases

Risk Management
System SIEM

Incident

Intelligence Management

Risk Process System

Audit Report

Control

Vulnerability

Data

Security

Access

Information

Level

provides

manages (1 ... ∞)

represented in (1) informs (1 ... ∞) references (1 ... ∞)

discloses (1 ... ∞)

compromises

provides

discloses

requires (1 ... ∞)

performed on (0 ... ∞)

includes

mitigates (1 ... ∞)

Automating the risk assessment process

To be effective in supporting the business need
for speed and risk management, it is important to
establish a set of tool and system integrations to
support this. The goal of the integrations is to
facilitate consistency and speed. These

integrations can trigger an alert when any risk
threshold is exceeded and notify relevant
stakeholders to pursue the right course of action.

A sample reference architecture for achieving an
integrated software and firmware security fabric
might look something like this:

7

Ensuring security by
design for firmware

We need to ensure that firmware in our products
are created with security in mind. This means
examining relevant attack vectors and addressing
corresponding vulnerabilities based on a sound
risk management approach. Part of this risk
management will involve risk assessments to help
with proactive mitigation before product
development proceeds too far.

In an era of rapid product development, integrated
software and firmware lifecycles, a balanced
development approach that manages both speed
and security risk is an essential component to
providing business value.

8

Additional resources:

• Gupta et al, “IoT Penetration Testing Cookbook,” 2017

• ISA, “Security for Industrial Automation and Control Systems”

• NIST, “SP 800-53: Security and Privacy Controls for Information Systems and Organizations,” 2020

• The Balancing Act Podcast by Security Compass, The Difference Between Product and Software Security

• The Balancing Act Podcast by Security Compass, Build a Product Security Program

• Software Engineering Institute, SEI CERT C Coding Standard

https://podcast.securitycompass.com/e/arun-prabhakar-the-difference-between-product-software-security/
https://podcast.securitycompass.com/e/rohini-narasipur-understand-the-difference-between-product-software-security/
https://wiki.sei.cmu.edu/confluence/display/c

Copyright © 2021 Security Compass.

TORONTO

390 Queens Quay W

2nd Floor

Toronto, Ontario

Canada M5V 3A6

GLOBAL HEADQUARTERS

1 Yonge Street

Suite 1801

Toronto, Ontario

Canada M5E 1W7

NEW JERSEY

621 Shrewsbury Avenue

Suite 215

Shrewsbury, New Jersey

USA 07702

CALIFORNIA

600 California Street

San Francisco, California

USA 94108

INDIA

#4.07

4th Floor, Statesman House

Barakhamba Road, New Delhi

India 110001

OFFICES

Go Fast. Stay Safe.

Security Compass, a leading provider of cybersecurity

solutions, enables organizations to shift left and build secure

applications by design, integrated directly with existing

DevSecOps tools and workflows. Its flagship product, SD

Elements, allows organizations to balance the need to

accelerate software time-to-market while managing risk by

automating significant portions of proactive manual processes

for security and compliance. SD Elements is the world’s first

Balanced Development Automation platform. Security

Compass is the trusted solution provider to leading financial

and technology organizations, the U.S. Department of

Defence, government agencies, and renowned global brands

across multiple industries. The company is headquartered in

Toronto, with offices in the U.S. and India. For more

information, please visit www.securitycompass.com.

1.888.777.2211

info@securitycompass.com

www.securitycompass.com

@ S E C U R I T YC O M PA S S

S E C U R I T Y C O M PA S S

http://www.securitycompass.com
http://www.securitycompass.com
https://twitter.com/securitycompass
https://www.linkedin.com/company/security-compass

