
Speed and Security:
Recent Innovations in Secure
Design and Development

WHITEPAPER

2

Preface

On behalf of the Security Compass team, it has
been a privilege to produce this whitepaper for
you. This is the culmination of great team effort,
and we hope you find this research valuable as
you seek to improve the security of your
software through secure design and
development practices. Ultimately, we want to
help build a world where our technology can be
trusted to be secure and safe.

I want to take a moment to thank all the security
community members around the world who
work tirelessly across a number of different
areas ranging from Agile to Zero Trust. This is an
acknowledgement and an immense thank you to
all. Please keep up the good work.

In order to provide clear value in this whitepaper,
we had to carefully select our audience. The
target groups for this whitepaper are Security
Engineers and DevOps Engineers. We want to
help bridge the gap between these two groups.

So why did we write a single whitepaper that
addresses both secure design and development?
Why not create two separate whitepapers? We
feel there is a great deal of overlap between
these two crucial security activities. Rather than
repeating much of the same information across
two whitepapers, it makes sense to produce a
single whitepaper.

As with any whitepaper, there are those who
both agree and disagree with us. We openly
welcome your comments and invite you to join us
as we push forward with integrating security
practices into our DevOps delivery pipelines. Let
us know what you think. Your feedback helps
inform the narrative that we, as security
professionals, are trying to push: that software
can be produced both rapidly and securely.

Please visit us at securitycompass.com or drop us
a line at info@securitycompass.com

If you’d like to join our research efforts,
contact our research team by email at
research@securitycompass.com

We look forward to hearing from you, and wish
you great success.

Sincerely,

Altaz Valani
Director, Insights Research
Security Compass

Credits

Executive Sponsor: Bruce Warren

Community Outreach:
Janet Khoshaba, Raquel Rodrigues

Editor: Megan Barker

Designer: Morgan Dunbar

mailto:info%40securitycompass.com?subject=
mailto:research%40securitycompass.com?subject=

3

Introduction

Every activity within your software development
life cycle should ultimately contribute some
value to the business. Typically, this means a
focus on revenue generation or cost reduction.
This type of alignment helps your project teams
focus on essential activities that help
drive forward the business strategy and
operating model.

As part of software development, security is no
different. Your security activities must
contribute value towards enabling the business
priorities. While security in software
development can include dozens of activities, in
this paper, we will focus specifically on secure
design and development activities. Both of these
activities are sufficiently early in the software
development life cycle to make a meaningful
contribution toward proactive security and
minimizing downstream noise that often slows
down our lead time.

When we talk about secure design and
development, it is often very difficult to speak
about value creation in the same breath. In many
cases, secure design practices (more specifically,
threat modeling) are perceived as blockers to
fast-moving DevOps pipelines. Secure
development (more specifically, secure coding)
suffers from lack of developer knowledge on
how to code with security in mind.

In this whitepaper, we will drill down on these
two security activities: threat modeling and
secure coding. We conducted a review of current
literature regarding these topics and identified a
number of problems and solutions to overcome
these challenges.

In our research, we focused on specific questions
related to value creation. In our opinion, value
creation is about achieving both speed and
security. Often speed takes precedence over
security. This offers very little value from a
security perspective. The rationale for pursuing
specific questions came out of our own
experience working with customers and
interacting with a broad range of communities in
industry. The questions we chose were:

1. What hinders or promotes speed and
security during secure coding?

2. What hinders or promotes speed and
security during threat modeling?

This whitepaper expands upon these questions.
It helps us, as a security community, better
understand what we can do to help our DevOps
delivery teams. Our objective is to enable them,
not get in their way.

Threat Modeling

Secure design represents the essential
foundation against which your secure coding
activities can be performed. It provides
constraints for your code and, ultimately, your
solution. Threat modeling ensures that a
particular design is as secure as possible;
however, there are many challenges when you
consider how threat modeling facilitates value
creation as it balances security with speed. The
following diagram represents what we found
through our research.

4

System sprawl and complexity

In today’s world, virtualization and
containerization is normative. Containers, for
example, are a great way to achieve scalability
and process isolation; however, because of the
ease with which containers can be spawned, the
complexity of architecture continues to grow.
Easing the burden of the monolith and
subsequent release from development into
production has led to a more complex
operational environment. You may, for example,
have orphaned containers that were used in the
past, but no one has shut them down. Consider
also the case of ephemeral components. Having
short-lived microservices introduces greater
architectural complexity, and that puts a burden
on having to manage security in such contexts.

This complexity makes it difficult to fully
understand the security vulnerabilities across all
of your systems, particularly those that are
developed outside your organization by other
communities or vendors.

Immature systems caused by lack of

collaboration

Security is best performed in a collaborative
manner. Limiting threat modeling to a small
group of experts creates bias which might miss
some critical weaknesses in your architecture.
Systems are best threat modeled when multiple
people are permitted to contribute and trade-
offs are made appropriately. If this collaboration
is weak or non-existent, a small group will
develop mitigations based on their own
understanding of the “right way.” This leads to
architectures with weaker security. [Simone
Curzi et al, 2021] explicitly writes, “Lack of
diversity in POVs. By not involving a broad group
of stakeholders, there is a reliance on personal
bias and assumptions about components or
libraries based on previous experience.”

If your systems are immature based on lack of
collaboration in the early stages of design, that
puts additional pressure on your security
operations team to detect the vulnerabilities and
quickly provide feedback to your developers for
mitigation.

Threat
Modeling

Value
Creation

Disappearance of network boundaries

Limited assurance modelling

Lack of threat modeling standards

Immature systems from lack of collaboration

Too manual

System complexity

5

Limited assurance from modeling

Lack of assurance is one of the biggest challenges
of threat modeling. Assurance stems from
consistency and traceability. Every threat
modeler, however, seems to have a slightly
different recommendation for mitigating attacks.
This lack of consistency among your threat
modelers gives rise to the question about
whether the mitigations being proposed will help
secure your systems. From a value perspective,
this erodes credibility of the advice.

At the present time, there is a movement within
the DevSecOps community, to help developers
conduct threat modeling. This, in our opinion, will
only amplify the problem. Developers necessarily
have a small view into their own code.
Attempting to threat model in this context can
lead to a lot of confusion across teams.

Disappearance of network boundaries

Historically, many solutions were developed
around the idea that a network boundary
provides the necessary security protection. This
led to an assumption of implicit trust. These days,
however, this assumption is being called into
question. Complex supply chains and contractor
partnerships make our network boundaries very
fluid. [The Open Group, 2021] states,
“Traditional, perimeter-based approaches built
on legacy models of identity, authentication, and
authorization do not meet the needs of a digital
business environment. In this modern digital
world with ever-evolving threats – such as
phishing, social engineering, and particularly
insider-threats – organizations must abandon
the flawed assumption that networks, both
internal and external, are secure.”

This has a profound impact on how you perform
threat modeling on your systems since we can no
longer rely on a network centric security model.
The lack of a threat modeling standard already
makes the exchange of threat models difficult.
Coupling this with an evolving security paradigm
that shifts emphasis from the network into
assets like data, applications, and APIs
compounds the problem. You need to threat
model with finer granularity. But making this
scalable presents a problem.

Too manual

Threat modeling is typically based on creation of
diagrams that try to assess potential attacks.
This activity is largely manual which interferes
and slows down the match faster-moving
developer and operations processes. [Simone
Curzi et al, 2021] states, “Updating these
diagrams is relatively slow since it is largely a
manual task. Revisiting a diagram requires
re-contextualizing the system and key
participants in the original threat modeling effort
may already be on other projects.” You need to
address manual intervention if speed is part of
the value proposition of threat modeling.

Lack of threat modeling standards

One of the biggest complaints we hear about
threat modeling is that it lacks a common
standard. Sure, there are standards, shared
practices, and frameworks that are proponents
of threat modeling. But specific standards
related to the design, analysis, and output of
threat modeling do not exist. This makes quality
assessments difficult. It means you are reliant on
qualitative expert opinions from a few
individuals who, hopefully, have a strong
understanding of the entire solution.

6

Threat
Modeling

Value
Creation

Perform network segmentation

Harden your architecture

Use defense in depth

Implement strong IAM protocols

Understand the entire stack

Implement data classification

Simplify the architecture

Implement asset management

Without an objective standard, this can be
difficult since the output from your threat
modeling can still vary widely.

Despite these challenges, there are actions you
can take in order to add value to your threat
modeling process. Once again, the emphasis
must be on balancing both speed and
security. Our research revealed eight
areas for improvement.

Harden your architecture

This implies using secure components in your
architecture. Securing the components will be
contextual. Depending on the level of security
required, some components will require more
security rigor than others. Having these secure
components enables your DevOps teams to
move much quicker because the hardened
components have already been verified for

security. But in order to secure those
components, you need to know which
components exist in the first place. And for
that, you need asset management.

Implement asset management

As threat modelers understand various assets,
they can assist DevOps teams by creating
appropriate guardrails that secure coding can
work within. At the present time, there is
significant emphasis on Bill of Materials and
Dependency Checking. There is some fine work
being done in these areas (you can search for
SPDX, CycloneDX, and dependency-check to
find out more). By threat modeling your assets,
you provide your downstream configuration
management teams with an opportunity to
update your threat model as they discover
new vulnerabilities which may have been

missed earlier.

7

Implement data classification

Protecting your data is the ultimate objective.
Prioritizing what data to protect provides the
necessary scope for threat modeling without
wasting time on data that is not deemed as
critical. Threat modeling with data classification
in mind will help to reduce the load on your
security teams and accelerate the threat
modeling activity by focusing their efforts.
This will also improve speed by reducing testing
time against low priority data assets.

Implement strong IAM protocols

Controlling who has access to specific resources
is essential. Reliance on an identity that is
outside of the code assists developers by
focussing less on security issues and more on
coding. Threat modelers can recommend the
security policies needed in order to achieve
least privilege access within the system
being developed.

Perform network segmentation

For security models that must be based on a
network perimeter (like legacy systems),
partitioning the network and trusted boundaries
helps to minimize the attack surface. Reducing
the network size also reduces the amount of
code that needs to be tested for regression,
thereby decreasing the lead time. It also provides
the essential business continuity without
resorting to a complete overhaul of the
legacy system.

Simplify the architecture

Simplifying and rationalizing your architecture
makes it easier to understand and identify

security vulnerabilities through threat modeling.
A simplified architecture also makes it easier for
developers to understand the bigger picture and
how they can develop various components that
fit into that simplified architecture. The natural
tendency of our architecture is for entropy to
grow. Rationalizing the architecture on a regular
basis ensures that security debt remains
manageable over time.

Understand the entire stack

If any part of your architecture is a black box, you
will never be certain about the security of that
component. Threat modeling will be limited to
the periphery. Using trusted and verified
components within your stack provides
confidence in being able to generate the right
controls to assist DevOps teams. Because
developers will have guidance across the entire
stack, they can proceed with greater confidence
that security is being addressed.

Use defense in depth

Create security controls at various levels of your
architecture with threat modeling. Some higher
level controls may even reduce the need for
lower level controls. This is good news because it
can accelerate development time by allowing the
lower, code level controls to be manageable and
well-understood by your developers. This does
not propose that developers do not need to
interact with threat modelers or architects.
On the contrary: with an understanding of
how security is managed, a shared
responsibility emerges.

The value matrix demonstrates how value
against security and speed is created based on
the suggested improvements.

8

Threat Modeling Challenges

System
Complexity

Immature
systems

from lack of
collaboration

Limited
assurance
modeling

Disappearance
of network
boundaries

Too manual
Lack of threat

modeling
standards

T
h

re
at

 M
o

d
el

lin
g

V
al

u
e

C
re

at
io

n

Harden your
architecture

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED
SECURITY SECURITY

Implement asset
management

SECURITY

SPEED
SPEED

SECURITY

SPEED

SECURITY

SPEED
SPEED

SECURITY

SPEED

Implement data
classification

SECURITY

SPEED
SPEED

SECURITY

SPEED

SECURITY

SPEED
SPEED

SECURITY

SPEED

Implement strong
IAM controls SECURITY SPEED SECURITY SECURITY SECURITY

Perform network
segmentation SECURITY SECURITY SECURITY SECURITY

Simplify the
architecture

SECURITY

SPEED
SECURITY

SECURITY

SPEED

SECURITY

SPEED
SECURITY

SECURITY

SPEED

Understand the
entire stack SPEED SPEED

SECURITY

SPEED
SPEED

SECURITY

SPEED

Use defense in
depth

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

9

Where SD Elements Can Help You Deliver
Value in Threat Modeling

SD Elements can help your threat modeling deliver value in the following ways:
Challenges with Secure Development

SECURITY SPEED

Hardening your architecture

• Built in guidance on hardening your cloud infrastructure

• A project-centric approach that decouples controls
from network centricity

• Reduces the time to create common mitigations for
your applications and infrastructure

• Providing greater traceability and assurance through
consistency of controls

• Bidirectional integrations with DevOps pipelines
thereby increasing the level of collaboration between
teams

Implement asset management

• Providing the security posture of your current
application portfolio

• Reducing effort by pre-selecting controls based on
given architectural components

Simplify the architecture

• Provide a defensible argument for rationalizing your
architecture against standards and regulations

• Pre-existing mappings between standards and
recommended mitigations

Understand the entire stack

• Using a project breakdown structure that allows you to
examine the security gaps for each level

Use defense in depth

• Supports defense in depth through mapping with
standards and frameworks that help identify well
known architecture weaknesses

1 0

Challenges with Secure Development

It behooves software developers to create code
that is secure. Vulnerable code represents an
entry point that can take a while to remediate
while giving attackers an opportunity to exploit.
As [Adkond Rahman et al, 2019] states, “We
observe security smells can have a long lifetime,
e.g., a hard-coded secret can persist for as long as
98 months, with a median lifetime of 20 months.”
Many teams focus on security once software has
entered into a production environment. By then
it is too late. [Rod Cope, 2020] agrees saying,
“While there is – rightly – a big focus on securing
software that is already deployed, the reality is

that many future vulnerabilities stem from the
creation of that software. Insecure applications
give hackers a back door.” As [Rod Cope, 2020]
also states elsewhere: “The problem is that
securing development is a tough challenge, due
to the increasing complexity of software, the
volume of code and other digital assets, multiple
contributors, distributed teams and the pressure
to deliver to tight deadlines.”

Through our analysis, we found the following
root causes for insecure development:

Root Causes of
Insecure Code

SAST scans don’t
catch all errors

Using components
without
understanding the
attack surface

Security standards
are difficult to
understand

Vulnerable
regressed code

Temporary fixes are
allowed to run in
production

Lack of secure coding
practices or code
samples available in a
specific language

Using
unapproved tools

Lack of time
for security

1 1

SAST scans don’t catch all errors

Because code scanners don’t catch all errors,
downstream testing reveals code level bugs
which have to be resolved much later in the
software development life cycle. In our
interviews, we discovered that developers feel
pressured to make security decisions which they
know little about. In such cases, they typically
move on to another activity where the output is
more predictable. This reduces the delivery
speed because of the ambiguity of output
from the tools being used.

Security standards are difficult

to understand

For a software developer, trying to interpret
high-level security guidance or policies can be
problematic. There may be several ways to
implement such policies. Resolving this ambiguity
takes up precious time and slows down the
development process. Despite the fact that many
organizations rely on standards to guide their
security programs, it needs to be recognized that
developers need much more granular guidance
around code level implementations. As [Fabiola
Moyón et al, 2020] states, “...developers, quality
engineers, and product owners face difficulties to
identify security-relevant process artifacts as
required by standards.”

Temporary fixes are allowed to run

in production

Because of the pressure to release quickly, code
is modified in production environments as a way
to quickly mitigate security concerns. The
thought is that the production level changes will
make their way back into the development

environment; however, this leads to a
discrepancy between production and
development environments which could lead
to vulnerabilities leaking as a result of
regressed code.

Using unapproved tools

The pressure to deliver quickly often leads to the
use of tools that improve developer productivity;
however, these tools may not be best suitable
from a security perspective. Therefore, even
though developers end up moving fast, changes
then need to be made later because of security
concerns. This slows down the release.

Using components without understanding

the attack surface

Software development today is largely based on
integrating various components. These
components help us deliver quickly; however,
using developer components blindly without
understanding their security posture opens up
your system to attacks. Developers rarely have
the time to examine security databases like
CWE or CVE to find out the vulnerabilities of
a component.

Lack of secure coding practices or code

samples available in a specific language

Because developers understand coding much
better than security, they often seek out code
samples to help them improve the security of
their code. If this code is not available, the
developer must figure out how to do it on
their own.

To resolve this, focus on value creators.

1 2

Disabling any component to libraries you

don’t need

Removing or disabling any components you do
not need reduces the potential attack surface. As
[National Cybersecurity Centre] states, we
need “...clearly defined and tightly constrained
communication between components”. By
constraining the interaction between
components, we can remove the libraries that
are no longer required.

Don’t create custom code on a framework

will do work

Resist the temptation to create your own custom
security framework when there are so many
other frameworks that do a much better job. As
[National Cybersecurity Centre] states,
“Building something bespoke, when there are a
variety of commodity options you could leverage,
is not something you should do lightly.”

Secure Coding
Value Creation

Disable any component to
libraries you don’t need

Running
dependency checking

Don’t create custom code
when a framework will do

Use secure
coding practices

Fixing
vulnerabilities quickly

Use coding standards

Never trust any user input
Use feature flags to
prevent execution of
unfinished features

Perform code reviews Use trusted components

1 3

Fixing vulnerabilities quickly

Many times, when a vulnerability has been
discovered in a production environment, it takes
a long time before that vulnerability is
remediated. The feedback loop from production
environments into developer workflows must be
fast so that these vulnerabilities can be
addressed quickly.

Perform code reviews

Engaging in code reviews provides the necessary
quality checks as the code is being developed.
Not only that, but it provides an opportunity to
train your developers to think from a security
perspective.

Running dependency checking

Running a dependency check ensures that the
frameworks and components which your
developers use can be tested and patched.

Use secure coding practices and standards

When your developers code, they should be
thinking about security. This might mean
constraining the use of the coding language in
order to prevent vulnerable code from being
deployed.

Use trusted components

While it may be tempting to use a component
that improves developer productivity, resist the
temptation. Instead, use trusted components
from suppliers that are well-known and trusted.

Develop misuse cases

Developers often think in terms of use cases and
functional requirements. They should extend this
line of thinking to include misuse cases where
they consider how a system might be
compromised.

The value matrix demonstrates how value
against security and speed is created based on
the suggested improvements.

1 4

Secure Coding Challenges

SAST scans
don’t catch

all errors

Security
standards

are
difficult to
understand

Temporary
fixes are
allowed
to run in

production

Using
unapproved

tools

Using
components

without
understanding

the attack
surface

Vulnerable
regressed

code

Lack of
secure
coding

practices
or code
samples

available in
a specific
language

Lack of
time for
security

Se
cu

re
 C

o
d

in
g

V
al

u
e

C
re

at
io

n

Disable any
component to
libraries you
don’t need

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED
SECURITY

SECURITY

SPEED

Don’t create
custom

code when
a framework

will do

SECURITY
SECURITY

SPEED

SECURITY

SPEED
SPEED

SECURITY

SPEED
SECURITY

SECURITY

SPEED

SECURITY

SPEED

Fixing
vulnerabilities

quickly
SECURITY

SECURITY

SPEED

Never trust
any user input SPEED SPEED

Perform code
reviews

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED
SECURITY

SECURITY

SPEED

SECURITY

SPEED
SPEED

Run
dependency

checking
SECURITY

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED
SECURITY

Use secure
coding

practices

SECURITY

SPEED
SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

Use coding
standards

SECURITY

SPEED
SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED
SECURITY

Use trusted
components

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED
SECURITY

SECURITY

SPEED

Develop
misuse cases

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

SECURITY

SPEED

1 5

Where SD Elements Can Help Your Secure Coding

SD Elements can help your secure coding deliver value in the following ways:

SECURITY SPEED

Use secure coding practices

• Reduce the amount of noise from code scanners
because of proactive guidance

• In-situ secure coding training with full integration into
the DevOps toolchain

Use coding standards

• Knowledge base of well-known coding standards • Mapping between coding standards and code examples

Develop misuse cases

• Expertly curated advice that already takes into account
common misuse cases

Conclusion

[Rajavi Desai et al, 2021] states, “The most
common challenges that any organization could
encounter while implementing DevSecOps can
be categorized into these three areas: speed,
collaboration, and integration.” We tend to agree.
If we are going to create secure software, we
must focus on automation for speed, and
integrating secure design and coding for better
collaboration. Threat modeling represents the
longer term perspective focused on the design of
your software, while secure coding represents
the immediate, short-term view around fast
delivery. You need both. Achieving this
effectively means you need to understand the
blockers in achieving the potential value of these
activities. In this paper, we have shared our own
experience of identifying the challenges and
mitigations to resolve them.

By introducing collaboration between threat
modeling and secure coding activities, you start
to capture potential vulnerabilities at a much
earlier stage. This gives you an opportunity to
address these vulnerabilities long before they
enter into production. Tools like SD Elements can
help you in achieving value creation in your
threat modeling and secure coding. In fact, as
[Rakesh Kumar et al, 2020] mentions, “The
preconceived notion that security
implementation delays the development and
delivery time can be addressed through
automation of security requirements fulfillment
in the adopted processes and practices.” The
reality, in fact, is quite the opposite. Tools like SD
Elements automate the fulfillment of security
requirements and facilitate the change needed
with integrating security and DevOps teams.

1 6

Bibliography

• Akond Rahman et al. “The Seven Sins:
Security Smells in Infrastructure as Code
Scripts”, 2019.

• Anders Wallgren. “DevSecOps: 9 ways
DevOps and automation bolster security,
compliance”, 2021.

• Anna Koskinen. “DevSecOps: Building
Security into the Core of DevOps”, 2020.

• Chris Romeo. “The 3 most crucial security
behaviors in DevSecOps”, 2021.

• Cindy Blake. “Reducing risk with end-to-end
application security automation”, 2020.

• Simone Curzi et al. “Evolving Threat
Modeling for Agility and Business Value”,
2021.

• DORA, “State of Devops 2019”, 2019.

• Ericka Chickowski, “Seven Winning
DevSecOps Metrics Security Should Track,
2018.

• Fabiola Moyón et al. “Using Process Models
to understand Security Standards”, 2021.

• Fabiola Moyón et al. “Integration of Security
Standards in DevOps Pipelines: An Industry
Case Study”, 2021

• Fabiola Moyón et al. Integration of Security
Standards in DevOps Pipelines: An Industry
Case Study”, 2021.

• Fabiola Moyón et al. “How to Integrate
Security Compliance Requirements with
Agile Software Engineering at Scale?”, 2021.

• Fabiola Moyón et al. “A Light-weight Tool for
the Self-Assessment of Security Compliance
in Software Development – An Industry
Case”, 2020.

• Faheem Ullah et al. “Security Support in
Continuous Deployment Pipeline”, 2017.

• Hasan Yasar. “Implementing Secure DevOps
assessment for highly regulated
environments”, 2017.

• Jeff Schilling. “Diving into DevSecOps:
Measuring Effectiveness & Success, 2018.

• Julie Peterson. “DevSecOps – All You Need
To Know”, 2021.

• Kim Carter. “Francois Raynaud on
DevSecOps”, 2017.

• Laurie Williams. “Continuously Integrating
Security”, 2018

• Mary Sánchez-Gordón et al. “Security as
Culture”, 2020.

• Meera Rao. “Building your DevSecOps
pipeline: 5 essential activities”, 2017.

• Nataliya Shevchenko. “Threat Modeling: 12
Available Methods”, 2018.

1 7

• National Cybersecurity Centre. “Secure
design principles”, https://www.ncsc.gov.uk/
collection/cyber-security-design-principles

• Rajavi Desai et al. “Best Practices for
Ensuring Security in DevOps: A Case Study
Approach”, 2021.

• Rakesh Kumar et al. “Modeling continuous
security: A conceptual model for automated
DevSecOps using open-source software over
cloud (ADOC), 2020.

• Rod Cope. “Strong security starts with
software Development”, 2020.

• Saima Rafi et al. “Prioritization Based
Taxonomy of DevOps Security Challenges
Using PROMETHEE”, 2020.

• Teemu Laukkarinen et al. “Regulated
Software Meets DevOps”, 2018.

• The Open Group. “Zero Trust Core
Principles”, 2021.

• Wenjun Xiong et al. “Threat modeling –
A systematic literature review”, 2019.

Copyright © 2022 Security Compass.

TORONTO

390 Queens Quay W

2nd Floor

Toronto, Ontario

Canada M5V 3A6

GLOBAL HEADQUARTERS

1 Yonge Street

Suite 1801

Toronto, Ontario

Canada M5E 1W7

NEW JERSEY

621 Shrewsbury Avenue

Suite 215

Shrewsbury, New Jersey

USA 07702

CALIFORNIA

600 California Street

San Francisco, California

USA 94108

INDIA

#4.07

4th Floor, Statesman House

Barakhamba Road, New Delhi

India 110001

OFFICES

Go Fast. Stay Safe.

Security Compass, a leading provider of cybersecurity

solutions and advisory services, enables organizations to build

more secure software faster. With their flagship product, SD

Elements, the company helps automate significant portions of

proactive manual processes for security and compliance that

improves time to market for new technology. In addition, they

offer advisory services on how organizations can embrace

emerging technologies like cloud to strengthen their security

posture. Security Compass is the trusted solution provider to

leading financial organizations, technology enablers, and

renowned global brands. The company is headquartered in

Toronto, with offices in the U.S. and India. Follow Security

Compass on Twitter @securitycompass or visit them at

securitycompass.com to learn more

1.888.777.2211

info@securitycompass.com

www.securitycompass.com

@ S E C U R I T YC O M PA S S

S E C U R I T Y C O M PA S S

mailto:info%40securitycompass.com?subject=
http://www.securitycompass.com
https://twitter.com/securitycompass
https://www.linkedin.com/company/security-compass

