DJA101 - DEFENDING DJANGO

Course Learning Objectives

In this course, you'll learn what you need to do to take advantage of Django's built-in security features and
provide other layers of protection to your app. You'll learn how to set up your projects securely to prevent
attacks at run-time and how to secure the admin console. You will also learn how to identify secure and
insecure practices to protect your application against common attacks.

Description

This course was created for those who already have some experience coding in Python and developing
web applications with the Django platform. The purpose of this course is to show you secure ways of
creating web applications using the Django platform, and is intended to build on what you already know
about building web apps in this platform.

Audience Time Required

Python dgvelppers Tailored learning - 40 minutes total
Web application developers

A q Session Storage in Django .
Implementing CSRF Protection 8 Jang The MIDDLEWARE List

) N)) Django allows you to store session information in the database, cache, cookie,) _)) — .
After adding the CSRF Middleware in settings.py, you need to implement it : > Django applies the middleware in the order in which they appear on this list.
: or file. Which one should you use? . N N
into your form templates. Middleware classes with dependencies should go after the classes they are
dependent on.

<form action=".” Method=" > </form> — I" [] [] Settings.py

—_—

Use render() to generate the view that contains the CSRF token. database cache MIDDLEWARE [

Not using render()? Verify that the views are using Request_Context. dataisalways available information is wiped or

and is not lost upon overwritten when cache

system restart becomes full or system
isrestarted

Persistence
When not using a POST form, simply insert {% csrf_token %} to the
template or view that need:

Do not put the CSRF token into a cookie! data lookup takes T
Performance longer especially as overhead so session
database gets bigger data lookup is quick

clicknext to continue

Security Compass

COPYRIGHT 2017

Course Outline

1. Setting Your Project Up Securely

* Securing the Servers

* Securing the Secret Key

* Installing Django SecurityMiddleware

* The MIDDLEWARE list

+ About Clickjacking

* The X-Frame-Options header

+ Activating Clickjacking Protection

* About Cross-Site Scripting

* Activating XSS Protection

* About Content or MIME Sniffing

* Activating Content or MIME Sniffing Protection

* Enabling SSL Redirects

* Implementing HTTPS Strict Transport Security

+ Configuring HSTS Settings

* Validating Hosts

* Implementing Secure Session Management

* Session Storage in Django

» Cached_db Method

* Setting Up Your Session Storage

+ Configuring Your Cookies

* Subdomains and Cookies

* Securing User-Uploaded Content

* Storing User-Uploaded Content

« Configuring Django Server to Secure
User-Uploaded Content

+ Configuring your Django Model

3. Securing Your Django Admin and
Server

+ Changing the Default Admin URL

+ Changing the Default Admin Docs URL

* Creating the Superuser Account

« Restricting Access to Specific IP Addresses
* Updating Django

2. Developing Your Web Apps
Securely

* The Django Object-Relational
Mappers

* Parameterizing Raw SQL Queries

* Escaping and Sanitizing Character
Strings

+ Autoescaping

* About CSRF

* Django's CSRF Defense

* Implementing CSRF Protection

* Using CSRF Protection With
SERENS

« Exempting a View from
Clickjacking Protection

» Settings and Functionalities
to Avoid

« Safeguarding Autoescaping

+ Safeguarding HTML Sanitizing

* Including and Excluding Fields
When Using ModelForm

* Blocking Python Code Injection

* Using eval(), exec(), and execfile()
Safely

* Serialization/Input Parsing

% Security Compass

COPYRIGHT 2017

