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INTRODUCTION 
 

Static analysis is a key part of conducting secure software development today. Catching errors 

before deploying into a production environment can help reduce cost and improve quality. 

There are many different types of static analysis tools. For the purpose of this paper, we are 

focused on the subset of tools called Static Application Security Testing (SAST) tools. These tools 

are useful in the development stage where code is analyzed to identify security vulnerabilities 

early in the life cycle.  

 

Many organizations feel that the exclusive use of code scanners is sufficient to ensure security 

and compliance of their applications. As this paper will show, this is not the case. In fact, there 

are many categories of problems that static analyzers are not capable of addressing. As (Chess 

2007) explains, “All static analysis tools are guaranteed to produce some false positives or some 

false negatives.” (Zhioua, 2014) agrees that “...these tools fall short in verifying the adherence of 

the developed software to application and organization security requirements.” We intend to 

show the various categories of issues scanners cannot catch. 

 

Our goal with this research is not to downplay the importance of code scanners; rather, our aim 

is to continually educate software developers, managers, directors, and CISOs about how 

scanners alone cannot catch all vulnerabilities. We show that scanners need complementary 

tools and/or processes at a higher level of abstraction in order to overcome the problem of false 

alarms by generated by scanners. Some of these complementary tools and processes include 

threat modeling, automated requirements management through policy-to-procedure platforms, 

and Software Development Life Cycle (SDLC) integrations.   
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HOW SCANNERS WORK 
 

Before attempting to analyze the gaps with scanners, it is important to understand how they 

work. In a nutshell, they all work in a similar way. As Chess aptly summarizes, “They all accept 

code, build a model that represents the program, analyze that model in combination with a 

body of security knowledge, and finish by presenting their results back to the user” (Chess 

2007). Based on the work of (Zhioua, 2014) here are some common techniques used in scanners: 

  

• Data flow analysis 

• Control flow analysis 

• Symbolic analysis 

• Taint analysis 

  

Based on a series of logical security tests, a scanner will produce a result to indicate whether or 

not the test fails (i.e., whether or not a vulnerability exists in the code). This may or may not 

correspond to the truth. If the scanner predicts the actual state of the code, it leads to a correct 

prediction. In those cases where the scanner did not catch an actual error, this is referred to as a 

false negative. If the scanner identifies an error where none actually exists, it is a false positive. 

The goal of a scanner is to minimize both false positives and false negatives. 

  

In essence, we have four possibilities: 

  Actual State of Vulnerability in Code 

  TRUE FALSE 
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Data-flow analysis  

The technique used by scanners traces the flow of data through the code. “It aims at 

representing data dependencies in the source code and allows [you] to track the effect of input 

data” (Zhioua 2014). Using a symbol table, it is possible to determine whether the values for a 

given data variable are consistent within the bounds of that type. Any type mismatch or out of 

bounds exceptions can be caught.  

  

When tracking the flow of data through code, there is a potential gap with programmer intent. 

For example, (Aspinall, 2016) suggests the following code snippet will generate a false positive 

around “possible loss of precision”: 

 

short s = 0; 

int i = s; 

short r = i; 
 

 

Here, reassigning the value of s into an integer variable trips the scanner into thinking the value 

cannot be assigned to a short data type subsequently. 

 

Control-flow analysis 

Keeping an application in a predictable state is an important attribute of secure software. Using 

a directed graph, it is possible to determine the program flow across various modules within the 

application. The goal is to ensure each transition is accounted for and leaves the application in a 

predictable state. “A program’s control flow graph (CFG) is used to determine those parts of a 

program to which a particular value assigned to a variable might propagate” (Parasoft 2011). 

  

A sample CFG looks something like the following: 

 

The CFG can be constructed using the combination of an Abstract Syntax Tree and adding 

control flow information. 
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In today’s event driven environments, the flow of control across an application grows 

significantly with each new module or component. Best practices in software development 

encourage modular programming and some categories of applications such as microservices 

encourage the use of hundreds of components. Working through each of these flows can be 

very time consuming and prevent teams from achieving their target of fast delivery. In 

discussing Control Flow Analysis, (Barbosa, 2012) explain “In general, the problem of discovering 

all the possible execution paths of a code is undecidable. (cf. Halting problem)”. Elsewhere, (Ernst 

2003) explain that “Because there are many possible executions, ...[static analysis]...must keep 

track of multiple different possible states. It is usually not reasonable to consider every possible 

run-time state of the program; for example, there may be arbitrarily many different user inputs 

or states of the runtime heap.” 

  

In cases where code cedes control to a third party module in which code is not available, 

scanners will not be able to address the security risk. “Sometimes there is clear evidence of a 

vulnerability in the HTTP response, such as a cross-site script in the HTML. But usually the 

evidence is less clear, such as when you send a SQL injection attack and the response is a 500 

error. Was there a SQL injection?  Or did the application just break?” (Williams, 2015) 

  

This problem is further complicated when the third party uses custom objects. “Even if you know 

that the request is JSON or XML and you have some kind of schema for the API, it’s still 

exceptionally difficult to provide the right data to automatically invoke an API 

correctly...Applications using Google Web Toolkit (GWT), for example, has its own custom syntax 

and can’t be scanned without a custom scanner” (Williams 2015). 

 

 

 

Symbolic analysis 

This technique translates the code into a model that can be analyzed mathematically for 

correctness. “Symbolic analysis is deemed to be useful in transforming unpredictable loops to 

predictable sequences, and is mainly used for code optimization...” (Zhioua 2014).  

  

While symbolic analysis can help address code complexity, it does not account for compiler 

optimization (which we will discuss later). Even if a particular implementation of symbolic 

analysis can help reduce security vulnerabilities, the compiler used to construct a production 

build may have a completely different set of optimizations thereby leading to false positives and 

negatives. 
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Some organizations try to mitigate this risk by running bytecode analysis instead. (Masood 

2015) explains this position, “For the modern IL (intermediate bytecode) based languages, most 

of the new static analysis tools perform the byte code analysis instead of looking at the source 

files directly. This approach leverages compiler optimizations, and provides best of the both 

worlds.”  However, as (Curran 2016) points out, this has some consequences: 

 

 

 

 Static Code Analysis Bytecode Analysis 

Detection 

Fast feedback for developers as 

they code 

Late stage detection only once code is 

compiled 

Developers mitigate risks on the go Compiler optimization may hurt results 

Remediation Easy access to the source code 
Vulnerabilities must be prioritized and then 

sent back to developers for mitigation 

Time 

consumption 

Minimal High 

Incremental scanning can save 80% 

of time 
All the code must be scanned 

ROI 

High Low 

Saves time, money and educates 

developers 

Time consuming, may not detect important 

findings (hardcoded passwords etc.) 

Bytecode analysis is a late stage detection strategy which can make regression scaling difficult. It 

also introduces the possibility of additional false negatives when it comes to hardcoded 

passwords. 
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Taint analysis 

Taint Analysis attempts to take advantage of the data flow from user input into vulnerable 

functions. From a security perspective, the user input is ideally sanitized before reaching these 

vulnerable functions. By tainting the user input, a trace is done to determine the impact on these 

vulnerable functions. If the vulnerable function is impacted from a security perspective, the 

variable is flagged. 

 

 

WHY A SCANNER WILL ALWAYS GENERATE FALSE 

POSITIVES AND NEGATIVES 
 

 

1. It is highly unlikely for someone to create a static analyzer that catches all known 

security vulnerabilities. 

In computability theory, there is something called the Halting problem. In a perfect world, 

we are able to execute a program from the start state through the termination (or Halt) 

stage. As software becomes more complex, this becomes non-deterministic. According to 

Rice's Theorem, any non-trivial semantic properties of programs are undecidable. The 

assumption made by scanners, however, is that we can execute code from start to finish 

predictably. 

 

Some examples of non-halting problems are: 

 

• Array out of bounds: when testing whether an index extends beyond an allocated 

buffer size, the test itself will have to extend beyond the buffer to prove true. 

Therefore the program will actually not Halt but still continue to run. 

• SQL string comes from tainted source: taint analysis tries to track an input value to a 

vulnerable function. “Because they use a binary classification for data (tainted or 

untainted), they classify functions as either being sanitizers...or being security 

irrelevant. Because the policy that these techniques check is context-agnostic, it 

cannot guarantee the absence...” (Wassermann 2007). 

• Is pointer used after it is freed? 

• Is accessing a variable the source of race condition? 
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As a result static analyzers will have some of the following problems: 

 

1. Nontermination (the inability to accurately predict that code execution will end as 

expected) 

2. False alarms (false positives) 

3. Missed errors (false negatives) 

All static analyzers sit somewhere between sound and complete. (Blackshear 2012) clarifies 

that “A sound static analysis overapproximates the behaviors of the program. A sound static 

analyzer is guaranteed to identify all violations..but may also report some ‘false alarms’...A 

complete static analysis underapproximates the behaviors of the program...there is no 

guarantee that all actual violations..will be reported”. In an effort to be more sound, the 

internal rules engines try to catch every possibility, leading to a lot of noise for developers 

to sift through. On the other hand, emphasizing completeness will not yield a complete 

picture of the security of the application. 

 

 

2. Scanners are typically optimized for a certain class of vulnerabilities. 

Not all scanners are created to catch the same category of vulnerabilities.  Some are 

focused at the syntax level while others perform a detailed model analysis to try and derive 

data and flow information.  Because of this, some organizations have opted to use multiple 

scanners to try and fill the gaps.  This creates a problem, however, because a higher level 

scanner might falsely report an issue that a lower level scanner understands to be 

valid.  “Each of these tools is focused on specific security properties and requires human 

intervention to different degrees”  (Zhioua, 2014). 

 

As a case study, (Ye, 2016) demonstrates the results of detecting and fixing a buffer 

overflow error (in particular, notice the column indicating the False Negative rate): 

 

Scanner 
# Identified 

bugs 

False Negative 

rate 

# Identified 

fixes 

False Positive 

rate 

Scanner A 19 68.3% (41/60) 13 31.6% (6/19) 

Scanner B 32 68.0% (68/60) 8 75.0% (24/32) 
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Scanner C 10 56.5% (13/23) 0 100.0% (10/10) 

Scanner A + 

Scanner B 
42 58.0% (58/100) 14 66.7% (28/42) 

Scanner B + 

Scanner C 
39 61.0% (61/100) 7 82.1% (32/39) 

Scanner A + 

Scanner C 
26 59.4% (38/64) 13 50.0% (13/26) 

All 47 53.0% (53/100) 13 72.3% (34/47) 

 

In this study, the  results suggest that scanners missed over half of the buffer overflow 

errors even when used in combination with each other.  This leads us to believe that, while 

they have a useful role in identifying application security gaps, scanners cannot be the only 

activity used to identify security vulnerabilities.  A recent survey by (Security Compass, 2017) 

revealed that static analysis was, on average, one of the top 3 security activities performed 

by large organizations.  This represents a significant gap between reality and execution.  As 

an example of the ubiquity of this security vulnerability, at the time of this writing, a simple 

search for “buffer overflow” in the MITRE Common Vulnerabilities and Exposures (CVE) List 

returned over 8,300 results.  A search for “sql injection” (the top category in OWASP’s Top 

10 list) returned less than 6,800 results. 

 

Scanners face a tradeoff between speed and accuracy.  This has an impact on the result set 

of identified security vulnerabilities.  For example, a scanner that performs only syntax 

analysis and does not rely on compiled code will perform faster.  Since its accuracy will be 

based on pattern detection, it might result in a lot of false positives.  From a probability 

perspective, having a lot of false positives can imply greater accuracy but the manual cost of 

sifting through the results can be cost prohibitive.  Therefore, in an effort to reduce the 

number of false positives, scanners need to trade off greater accuracy.  
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3. Compiler optimization can inject security vulnerabilities. 

Static analyzers examine code during the development phase. Compiling code can 

introduce security vulnerabilities even though a scanner did not find an issue. As (Deng, 

2016) states, “A compiler can be correct and yet be insecure.”  

D’Silva and his team identified three classes of security weaknesses introduced by compiler 

optimizations: 

i. information leaks through persistent state 

ii. elimination of security-relevant code due to undefined behavior 

iii. introduction of side channels 

They produced the following example where a compiler can introduce security 

vulnerabilities.   

crypt(){ 

key = 0xC0DE; // read key 

... // work with the secure key 

key = 0x0; // scrub memory 

} 

 

Here the value of key is reset by the developer as a way to clear the value of the 

variable.  However, a compiler can view the last instruction as unnecessary because it is 

never used again.  To improve software performance, the compiler may completely ignore 

the last statement.  This creates a security vulnerability by way of any reference to the 

memory location addressing the variable key. 
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4. Scanners do not understand intent 

Because scanners rely on a predefined set of rules, they cannot interpret the intent. 

(Zhioua, 2014) states that “If we had a security policy that expresses the ‘confidentiality 

of user’s payment information’ requirement, current static code analysis tools will not be 

able to concretize it or to relate it the concrete user information variables in the source 

code.”  

 

(Zhioua, 2014) demonstrates this concept with an example: 

 

// input data: credit card number + expiry date + crypto 

int creditCardNumber = input_creditCardNumber; 

Date expiryDate = input_date; 
int cryptogram = input_cryptogram; 

  
// Encrypt credit card number 

Cipher rsa = Cipher.getInstance(“RSA/ECB/PKCS1Padding”, 

SunPKCS11-eTokenPKCS11); 

  
 rsa.init (Cipher.ENCRYPT_MODE, sharedKey); 

  
 byte[] encrypted_creditCardNumber = rsa.doFinal(Integer 

.toString(creditCardNumber).getBytes()); 

  
 // Encrypt cryptogram 

byte[] encrypted_crypto = rsa.doFinal(Integer 
.toString(cryptogram).getBytes()); 

  
 // Encrypt expiry date 

 byte[] encrypted_date = rsa.doFinal(Integer 

.toString(expiry_date).getBytes()); 

  
 // Store user information 

 storeUserInfo(encrypted_creditCardNumber, encrypted_date,  

encrypted_crypto); 

  
// logging encrypted data 

logMessage = “User Information encrypted: “ +  

encrypted_creditCardNumber + “ “ + encrypted_date + “ 

“ +  
encrypted_crypto + “ “ + sharedKey.toString(); 

  
logger.log(Level.INFO, logMessage); 

  
// Send user information to invoice_edit_service 

sendUserData(creditCardNumber, expiry_date, cryptogram); 

  
// Logging User Information 
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logMessage = “User information sent: “ + creditCardNumber + 

“ “ +  

expiry_date + “ “ + cryptogram; 
logger.log(Level.INFO, logMessage); 

… 

 

And the method sendUserData() is as follows: 

 
public void sendUserData(int n, Date d, int c) throws 

NetworkException { 
  try { 
   HttpClient httpclient = 

HttpClients.createDefault(); 
   HttpPost httppost = new  

HttpPost(“http://www.domain.com/invoice/”

); 

  
   // HTTP Request parameters 
   List<BasicNameValuePair> params = new  

ArrayList<BasicNameValuePair>(); 
   params.add(new BasicNameValuePair(“cardNumber”,  

String.valueOf(n))); 
params.add(new BasicNameValuePair(“expDate”, 

d.toString())); 
   params.add(new BasicNameValuePair(“crypto”,  

String.valueOf(c))); 

  
   httppost.setEntity(new 

UrlEncodedFormEntity(params,  
“UTF-8)); 

  
   // Execute and get the response 
   HttpResponse response = 

httpclient.execute(httppost); 
   ... 

 

 

The final line of code in sendUserData() passes information in plaintext.  (Zhioua, 2014) 

further explains, “This is a security breach that automated source code vulnerability 

detection tools cannot recognize automatically using string-matching, and 

independently from the application expected security objectives.” 

 

 

5. Some vulnerabilities can not be identified through automation 

Achieving 100% automation for static analysis is not possible. According to (White 2016), 

“Out of the total 160 rules available there are 85 that either state explicitly that they may 

be automated or appear to be automatable. Also, the CERT website divides the secure 
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coding rules into 20 categories. Three out of the 20 categories do not contain any rules 

that can be automated leaving 17 categories with eligible rules to automate.” 

 

Here are some example rules from the SEI CERT Oracle Coding Standard for Java where 

sound automation is not feasible in the general case: 

Rule Description 

NUM03-J Use integer types that can fully represent the possible range of 

unsigned data 

NUM08-J Check floating-point inputs for exceptional values 

OBJ02-J Preserve dependencies in subclasses when changing superclasses 

OBJ05-J Do not return references to private mutable class members 

OBJ11-J Be wary of letting constructors throw exceptions 

FIO05-J Do not expose buffers created using the wrap() or duplicate() methods 

to untrusted code 

FIO06-J Do not create multiple buffered wrappers on a single byte or character 

stream 

FIO12-J Provide methods to read and write little-endian data 

SER02-J Sign then seal objects before sending them outside a trust boundary 

SEC00-J Do not allow privileged blocks to leak sensitive information across a 

trust boundary 

SEC04-J Protect sensitive operations with security manager checks 

SEC06-J Do not rely on the default automatic signature verification provided by 

URLClassLoader and java.util.jar 

ENV00-J Do not sign code that performs only unprivileged operations 

ENV01-J Place all security-sensitive code in a single JAR and sign and seal it 
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CONCLUSION 
 

Static code analysis using scanners is an important part of the software development process. 

We should not, however, rely solely on the results of scanners. There are many situations where 

scanners will miss known vulnerabilities and target non-existing ones.  

 

Some teams rely on Dynamic Analysis to complement Static Analysis. The challenge with 

Dynamic Analysis suggested by (Ernst 2003) is that “There is no guarantee that the test suite 

over which the program was run (that is, the set of inputs for which execution of the program 

was observed) is characteristic of all possible program executions.” 

 

So how do we address the gap left behind by code scanners?  (Kaur 2014) states that “The 

Software Development process itself appears to look at security as an add-on to be checked and 

deployed towards the end of the software development lifecycle which leads to vulnerabilities in 

web applications.”  This is a costly approach. We need to shift the focus earlier in the Software 

Development Lifecycle (SDLC), integrating software security into the development process. 

When you automate security by building it into the SDLC (e.g., by using a policy-to-procedure 

platform), you’re capable of managing virtually all known vulnerabilities, rather than only those 

that scanners detect. This ensures that your applications are more secure and that your overall 

risk is lower.  

ENV03-J Do not grant dangerous combinations of permissions 

ENV04-J Do not disable bytecode verification 

ENV05-J Do not deploy an application that can be remotely monitored 

ENV06-J Production code must not contain debugging entry points 

JNI00-J Define wrappers around native methods 

JNI02-J Do not assume object references are constant or unique 

MSC00-J Use SSLSocket rather than Socket for secure data exchange 
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To help overcome the code scanner security gap, there are two key activities that can be 

performed earlier in the SDLC: 

 

• Start by managing software security requirements. This way, you can build security 

controls into the design of your software. For one, this serves to abstract the code to a 

higher level, so that you can clarify its  intent and  help reduce some of noise with static 

analysis. For example, (Calderón 2007) have created a taxonomy of security requirements 

as shown below: 

First level categories Second level categories 

Non-repudiation requirements Non-repudiation 

  

  

  

  

  

Integrity requirements 

Modification 

Deletion 

Datum validation 

Exception handling 

Prerequisite 

Separation of duties 

Temporal 

  

  

Availability requirements 

Response time 

Expiration 

Resource allocation 

  

  

  

  

  

  

Confidentiality requirements 

Encryption 

Authentication 

Aggregation 

Attribution 

Consent and notification 

Cardinality 

Traces 
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• Perform threat modeling, an activity which “...provides complete information on how the 

software can be attacked, what can be attacked, which areas are attack prone, what kind of 

threats are applicable etc. This would give developers an opportunity to solve problems, 

remove irregularities and non-conformance to standards, and remove unwanted 

complexity early in the development cycle.” (Kaur, 2014). Threat modeling should also be 

used to drive the implementation of security requirements. This way, these security 

requirements can be managed throughout the SDLC. 

Ultimately, there is no single solution to software security; ensuring that applications meet 

stringent security and compliance standards is a multifaceted process that requires human 

intervention and tools, as well as advanced automation platforms.  

 

An important consideration when managing software security requirements earlier on in the 

software development life cycle is automation: it provides a fail-safe way to reduce 

vulnerabilities in your software, while expediting the security implementation process. Security 

Compass’ policy-to-procedure platform, SD Elements, is an automation platform with an 

extensive knowledge-base, covering security, compliance, languages, frameworks, and 

deployment. It’s built and maintained by our PhD research team, advisory consultants, and 

subject matters experts, and it integrates with virtually all ALMs to fit in seamlessly with any 

organization’s workflow. SD Elements optimizes management of security requirements in the 

early stages of the SDLC, and it fills in many of the gaps left behind by code scanners. It also 

stands as a light-weight threat modeling tool, which can supplement human-run threat 

modeling processes.  

 

Another solution for the security gap left by code scanners is investing in a comprehensive 

DevSecOps program that is tailored to your organization’s unique needs. Security Compass 

offers such a program, where we start by assessing the current state of your AppSec program, 

building from ground zero or building on what has been started. Our experts then develop a 

program strategy tailored to your organization’s needs. This means that, wherever we find gaps 

in your application security practices, we leverage what you have–whether that’s a toolset or 

professional team– to make up for it. While SD Elements is a major component of most of our 

DSO programs, we also provide other essential resources and tools, like a Security Champions 

program and Just-in-Time Training, to create a security-centric organization.  

 

To learn more about Security Compass’ SD Elements platform, get a free demo here. 

https://www.securitycompass.com/free-demo/
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