
The OWASP Top 10 provides a list of common vulnerabilities in software application, and apps developed
in iOS with Objective-C and Swift are no exception. This course details a baseline guidance for developers
to address vulnerabilities in iOS apps by delving into the causes of common vulnerabilities and the
defenses to mitigate them. Developers will explore secure coding practices that defend against
weaknesses such as authentication, sensitive data leakage, and injection attacks, and Apple's proprietary
security tools such as App Transport Security for secure data transfer, and Secure Enclave for key storage.

Explore defenses against common vulnerabilities in iOS applications developed with Objective-C and
Swift. This course covers industry best practices in secure coding as it relates to authentication and
authorization, session management, secure data transfers, secure data storage, cryptography, and
secure data ingestion.

COPYRIGHT 2019

iOS mobile application developers
Tailored learning - 60 minutes total

Course Learning Objectives

Description

Audience Time Required

iOS application architects
Security professionals

IOS201 - DEFENDING iOS

IOS201 - DEFENDING iOS

COPYRIGHT 2019

Course Outline

2. Secure data transfer

• Unencrypted communications
• Improper certificate validation
• Code: Mismatched certificate
 bypass *
• App Transport Security (ATS)
• Using CryptoKit **
• Certificate pinning
• Code: NSURLConnectionDelegate
• Code: Pinning the TLS certificate *
• Code: Disabling ATS

3. Secure data storage

• Sensitive data stored in plaintext
• Sensitive data stored on a device
• Background apps
• Automatic snapshots
• Shared clipboards
• Screen recording and
 broadcasting
• Store sensitive data
• Store data in the iOS keychain
• Store data in the iOS keychain
 (example)
• Code: Keychain (Save Data) *
• Code: Keychain (Read Data) *
• Code: Keychain (Delete Data) *
• Clear data for background apps
• Sanitize the snapshot screen
• Private pasteboards
• Code: Private pasteboards
• Code: Sanitize content

1. Authentication and
authorization

• Authentication vs authorization
• Untrusted incoming requests
• Client-side authentication bypass
• No account lockout or throttle
• Insufficient password policy
 requirements
• Insufficient authorization
 requirements
• Integration with password
 managers
• Password management
 applications
• Suggest strong password at
 account creation
• Token management on the server
 side
• How OAuth works
• About ‘appsecret_proof’

4. Cryptography

• Insufficient pseudo random key
 generation
• Symmetric key cryptography with
 hardcoded keys
• Random key generation
• Using Apple Secure Enclave 1 of 3
• Using Apple Secure Enclave 2 of 3
• Using Apple Secure Enclave 3 of 3
• How does Secure Enclave work?
• Code: SecKeyCreateRandomKey
• Random key generation
• Code: Decrypt the cipher

5. Secure data ingestion

• About secure data ingestion
• Client-side SQL Injection
• WKWebView input 1 of 3
• WKWebView input 2 of 3
• WKWebView input 3 of 3
• Keyboard data caching
• Third-party keyboards
• Parameterizing SQLi commands
• Safer SQL solution
• Disable UITextField caching and
 indexing
• Validate user input
• Detect third-party keyboards

* Part of Objective-C only
** Part of Swift only

