
Understand the security risks when developing and deploying applications in Node.js. Implement defensive
coding techniques and configurations to support secure coding for Node.js.

Understand the critical vulnerabilities in the OWASP Top 10 and see how these vulnerabilities can affect
Node.js projects. Students will also learn to define and identify secure code, differentiate between secure
coding methods, employ secure code in practice, and judge the effectiveness of these techniques.

COPYRIGHT 2016

Node.js developers
Web developers Tailored learning - 60 minutes total

NOD101 – DEFENDING NODE.JS

Course Learning Objectives

Description

Audience Time Required

COPYRIGHT 2016

NOD101 – DEFENDING NODE.JS

Course Outline

1. Injection

• About the vulnerability
• SQL injection
• NoSQL injection
• Command injection
• Newsflash
• Escape query values and
identifiers
• Use prepared statements
• Validate and sanitize input
• Best practices

3. Cross-Site Scripting

• About the vulnerability
• Insecure code
• Reflected XSS attack
• Stored XSS attack
• Code: Sanitize input
• Implement Content Security Policy
• Set HttpOnly cookie flag

2. Broken authentication and
session management

• About the vulnerability
• Poor logout or timeout
mechanisms
• Session hijacking
• Brute force password attack
• Secure the connection
• Code: Generate private key and
certificate
• Code: Implement TLS to create
HTTPS server
• Code: Enforce HTTP Strict
Transport Security (HSTS) policy
• Set Secure cookie flag
• Session timeouts
• Brute force attack protection
• Password requirement
• Code: Generic login failure
messages
• Code: Rate limiting

4. Security misconfiguration

• About the vulnerability
• Request size limits
• Implementation details leakage
• Do not run Node as root
• Set request size limits
• Hide server identity
• Disable Powered By in response
header
• Hide server info in Apache
• Hide server info in NGINX
• Harden HTTP response headers
on server
• Using Helmet to secure HTTP
headers

5. Cross-Site Request Forgery

• About the vulnerability
• Insecure website
• The CSRF attack
• You got CSRF’ed
• POST is not safe
• How anti-CSRF tokens can protect
you
• Code: Using the csurf middleware
• How our form's code looks like

6. Using components with
known vulnerabilities

• About the vulnerability
• Newsflash
• Guidelines for choosing a package
• Review the source code
• Monitor dependencies for updates
• Node Security Platform
• Snyk

