
The Developer-First
Application Security
Approach

SECURITY COMPASS WHITEPAPER

Copyright © 2021 Security Compass.

2

Taking control of the
development process

The move by organizations to DevOps and
other rapid development and deployment
methodologies has challenged security. The
old model of a separate application security
team with exclusive responsibility to identify
and prioritize vulnerabilities simply does not
work in today’s environment. The need to
release code quickly — and securely —
requires a different approach.

“Shifting left” is a good goal. However, scarce
security resources and the bottlenecks created
by security testing are not compatible with the
need for rapid time to market. Developers
must take the lead for security in this new
approach.

3

Do you rely completely
on application security
testing?

Using Application Security Testing (AST)
methods like static analysis, dynamic analysis,
and penetration testing as the primary way to
ensure security worked when software was
updated three or four times each year.
Organizations had more time between
releases than today and secure coding
standards were less well understood. The
tools required security experts to run and
interpret the results, but could identify
common coding errors that led to
vulnerabilities.

Security testing results were “noisy,” requiring
teams to scrub false positives and minor
issues, then prioritize the vulnerabilities by
criticality. In turn, the development teams
would refactor and resubmit the code for
additional testing. Since the tools were often
used late in the development process,
remediating the issues required more time.
Release dates would often slip due to the
scans, and friction between development and
security was common.

Security testing is not enough to
prevent vulnerabilities

Of course, the root cause of delays was that
vulnerability scanners were viewed as the
first-line for ensuring security. Development
teams are given functional specification
describing what the software should “do.”
That it should be secure was assumed, even
though that could only be articulated as
“having no vulnerabilities.” Security
requirements such as “don’t accept special
characters in user names,” “do not hard code
credentials,” and “allow a maximum of three
login attempts” did not exist.

Without anticipating security issues and
assigning those controls during the
development process, organizations are
forced to continue to use testing as the
primary means of improving security. The
result will continue to be a high number of
issues late in the development process,
leaving organizations with the choice of
delaying releases or releasing software with
vulnerabilities.

https://resources.securitycompass.com/blog/are-vulnerability-scanners-enough-for-application-security

4

How can developers
ensure application
security?

The answer is to provide development teams
with the information and tools needed to
build security into the code — as they write
the code. There are several strategies for
accomplishing this, each with its own
challenges.

Secure coding standards are not
actionable

The most common strategy for developer-
driven security is to develop and deploy
secure coding standards. In their first
iterations, these may cover basic security
hygiene, like always use the principle of least
privilege or adopt zero trust design strategies,
and validate all input to ensure appropriate
input type and content. If written standards
are required, organizations can adopt existing
guidelines from OWASP, CERT, and others.

Secure coding standards are a good start.
However, they can be challenging to
communicate, follow, and enforce. Developers
are accustomed to delivering a fixed set of
features by a specific date. More importantly,
teams are almost always measured by this
standard. When building a feature for release,
it may be difficult to remember that policy
dictates one must “Contextually output encode
all data returned to the client that originated
outside the application’s trust boundary.”
Beyond remembering the need for this policy,
the developer also needs to understand the
application’s trust boundary and any
organizational standards specific to this
policy.

In short, while secure coding policies are
necessary, they are typically not actionable. A
written policy does not provide cues to
developers for when a policy is triggered.
Examples for developers may exist in a
manual, but this can slow progress.

https://resources.securitycompass.com/whitepapers/what-is-zero-trust-security
https://resources.securitycompass.com/blog/owasp-top-10
https://resources.securitycompass.com/blog/owasp-top-10

5

Traditional threat modeling is
time-consuming

Threat modeling can address some of the
operational challenges with secure coding
policies. In a traditional threat model,
software architects, developers, and security
experts analyze an application’s design to
identify weaknesses an attacker could exploit.
In highly critical environments, teams may
even examine the tools, techniques, and
procedures used by a specific adversary
described in MITRE’s ATT&CK Framework.

The output of a threat model is a list of all
identified threats and a corresponding set of
controls to mitigate the risk that are assigned
to developers and QA personnel. Ideally, the
threat model also incorporates secure coding
policies for the application under review. This
effort makes secure coding requirements
more actionable, but poses other challenges:

Scarce resources: Only a few organizations
have all the security resources they desire.
And traditional threat models require weeks
of effort from experts to discuss architecture,
complete questionnaires, produce data flow
diagrams, and select controls.

Scale: Traditional, manual threat modeling
does not scale. Enumerating threats and
corresponding controls can take weeks.
Diagraming architecture and generating
attack trees and DFDs require days of
discussion.

Consistency: The participants in a threat
model are responsible for identifying and
ranking threats then prescribing controls. The
collective expertise and experience of the
team keeps changing as people move on to
different organizations. The result can be
inconsistent evaluations and controls.

Auditability: Shared spreadsheets or
documents can guide development and
security teams but are poor choices for
providing evidence of compliance in the event
of an incident or audit.

https://resources.securitycompass.com/webinars/using-mitre-att-ck-in-the-cloud-ttps-tools-and-trajectory

6

Establishing practices to
drive enhanced
application security

The problem, of course, is not with policies
and threat modeling. These both provide
well-established methods for building more
secure software. Policies call out
organizational best practices, so there is
consistency in how controls are used across
multiple projects. Threat modeling helps
teams anticipate threats and weaknesses and
assign controls to mitigate risk.

Further, most of these techniques to build
more secure code are well known. Even
without formal policies, development teams
realize they should validate untrusted input,
use authentication controls, and encrypt
sensitive data. The key is to ensure that that
information is provided to developers
consistently, as needed, and in a usable form.
This requires:

• Consistent classification of applications:
Risk ranking helps organizations focus on
which applications are most critical to
their business goals. In turn, this guides
teams in determining security policies and
compliance and privacy requirements for
the project. This could include secure
coding standards, prescriptive activities,
and controls required by standards such
as the PCI-DSS, or more general
standards of “reasonable security”
controls as used in Section 5 of the FTC
Act.

• Characterize the application’s technical
stack and associated threats: Manual
threat models are warranted for an
organization’s most critical applications.
However, up to 90 percent of the
applications’ threats are a function of the
programming language, frameworks, and
other aspects of its technical stack. Using
an automated threat modeling tool allows
organizations to scale threat modeling
across all applications and ensures
consistency between projects.

• Enumerate required controls for each
identified threat: The key to
implementing better security is
translating threats, policies, and
regulatory requirements into actionable
tasks and controls. Rather than generic
policies, security controls are specific
tasks that mitigate the risk for each
identified threat. Each task is assigned to
software developers and for coding
requirements, QA for test plans, or
operational security for server
configurations or web application firewall
rules. Using automated threat modeling
tools ensures consistency and compliance
with all internal and external
requirements.

7

Aligning security testing
with proactive security
practices

By analyzing the technical stack and
deployment environment of an application,
development and security teams can identify
and anticipate up to 90 percent of the threats
and weaknesses. Doing so with tools allows
organizations to scale threat modeling across
a large percentage of their application
inventory and ensure consistency of controls.

When threats and regulatory requirements are
translated into actionable tasks, development
teams can use the information and tools
needed to “build security in.” First-order
identification of potential vulnerabilities
becomes a function of meeting expressed
requirements, and security testing becomes a
validation exercise to ensure controls were
implemented correctly.

As development and security teams gain a
common understanding of requirements and
controls, it allows organizations to avoid
vulnerabilities late in the development
process.

Copyright © 2021 Security Compass.

TORONTO

390 Queens Quay W
2nd Floor
Toronto, Ontario
Canada M5V 3A6

GLOBAL HEADQUARTERS

1 Yonge Street
Suite 1801
Toronto, Ontario
Canada M5E 1W7

NEW JERSEY

621 Shrewsbury Avenue
Suite 215
Shrewsbury, New Jersey
USA 07702

CALIFORNIA

600 California Street
San Francisco, California
USA 94108

INDIA

#4.07
4th Floor, Statesman House
Barakhamba Road, New Delhi
India 110001

OFFICES

Go Fast. Stay Safe.

Security Compass, a leading provider of cybersecurity
solutions and advisory services, enables organizations to
adopt Balanced Development Automation for rapid and
secure application development. With their flagship
product, SD Elements, the company helps automate
significant portions of proactive manual processes for
security and compliance that improves time to market for
new technology. In addition, they offer advisory services
on howorganizations can embrace emerging technologies
like cloud to strengthen their security posture. Security
Compass is the trusted solution provider to leading
financial organizations, technology enablers, and
renowned global brands. The company is headquartered
in Toronto, with offices in the U.S. and India. Follow
Security Compass on Twitter @securitycompass or visit
them at securitycompass.com to learn more.

1.888.777.2211
info@securitycompass.com
www.securitycompass.com

@SECURITYCOMPASS

SECURITY COMPASS

https://twitter.com/securitycompass
https://securitycompass.com/
http://www.securitycompass.com
https://twitter.com/securitycompass
https://www.linkedin.com/company/security-compass

