
The Developer’s
Dilemma
Fast and Risky or Slow and Safe?

SECURITY COMPASS WHITEPAPER

Copyright © 2020 Security Compass. Updated April 2020.

1 2

The Developer’s Dilemma

For years, product management and software development have battled
over adding more features or delivering software faster. Faster software
time-to-market helps companies gain competitive advantage, so
businesses want to release new features quickly. This led many
companies to adopt rapid development methodologies to accelerate
delivery of new features.

However, to speed up product releases, companies usually compromise
on security. Failing to secure software and protect customer privacy is
one of the greatest business risks today. This happens because
integrating security is perceived as a lengthy process requiring scarce
security experts to work with developers daily. Even when companies
decide to inject security into development, scaling manual security
processes continues to be a challenge.

This seemingly competing goals of speed vs. security result in a
developer’s dilemma: whether to go fast and risky or slow and safe.

Pressure to go slow and safe

Building secure software is critical for organizations — it’s also the right
thing to do. Software security professionals want to ensure that the code
they write is secure, and the users of software, whether they are banks,
military, or consumers, depend on it to protect their sensitive
information. When a breach occurs, a company’s credibility and brand
reputation is on the line, impacting the entire business, not just that of
the DevSec team. More recently, software security has become a board-
level issue; the Equifax breach in 2017 reduced the company’s market
capitalization by over 30 percent and resulted in the forced retirement of
its CEO, CIO, and CSO. The company’s reputational damage continues
even today.

Pressure to go fast

As software development strategies have changed over the past 10
years, so too have strategies for securing software. When software
development primarily followed a waterfall methodology, security testing
relied on dynamic analysis and penetration testing of the application very
late in the development process.

With the growth of software-enabled features, development strategies have evolved. Organizations
that can deliver new features faster than competitors can gain market share and reduce customer
turnover. Methodologies like Agile, DevOps, and CI/CD accelerate time to market and require a
different approach to security. The adoption of open source and the ineffectiveness of traditional
testing tools for identifying vulnerable components means a changing attack surface and a wider
variety of testing tools.

From the security professional’s perspective, the old approach of a separate security testing team
using static or dynamic analysis on near-complete applications no longer works. Pressure to deliver
new features faster means security needs to be part of the development process – building security
into the software instead of testing for security at the end of the development lifecycle.

The financial argument for building security early

While testing for vulnerabilities late in the development lifecycle undoubtedly identifies
vulnerabilities, there are two negative consequences. First, since a near-complete version of the
software is required for this testing, vulnerabilities discovered are more difficult and expensive to
remediate. As shown in the graphic, a study by IBM showed that vulnerabilities identified after a
product was released cost 100 times as much to remediate as those identified – and avoided –
during the design phase of the Secure Development Lifecycle (SDLC) and over 15 times as much as
those identified during the coding phase.

Source: IBM Systems Sciences Institute

Earlier Visibility to Vulnerabilities Pays Dividends

ANALYZE IMPLEMENT TEST MAINTAINDESIGN

1x 6.5x 15x 100x

Cost to
 Remediate

1 2

The Developer’s Dilemma

For years, product management and software development have battled
over adding more features or delivering software faster. Faster software
time-to-market helps companies gain competitive advantage, so
businesses want to release new features quickly. This led many
companies to adopt rapid development methodologies to accelerate
delivery of new features.

However, to speed up product releases, companies usually compromise
on security. Failing to secure software and protect customer privacy is
one of the greatest business risks today. This happens because
integrating security is perceived as a lengthy process requiring scarce
security experts to work with developers daily. Even when companies
decide to inject security into development, scaling manual security
processes continues to be a challenge.

This seemingly competing goals of speed vs. security result in a
developer’s dilemma: whether to go fast and risky or slow and safe.

Pressure to go slow and safe

Building secure software is critical for organizations — it’s also the right
thing to do. Software security professionals want to ensure that the code
they write is secure, and the users of software, whether they are banks,
military, or consumers, depend on it to protect their sensitive
information. When a breach occurs, a company’s credibility and brand
reputation is on the line, impacting the entire business, not just that of
the DevSec team. More recently, software security has become a board-
level issue; the Equifax breach in 2017 reduced the company’s market
capitalization by over 30 percent and resulted in the forced retirement of
its CEO, CIO, and CSO. The company’s reputational damage continues
even today.

Pressure to go fast

As software development strategies have changed over the past 10
years, so too have strategies for securing software. When software
development primarily followed a waterfall methodology, security testing
relied on dynamic analysis and penetration testing of the application very
late in the development process.

With the growth of software-enabled features, development strategies have evolved. Organizations
that can deliver new features faster than competitors can gain market share and reduce customer
turnover. Methodologies like Agile, DevOps, and CI/CD accelerate time to market and require a
different approach to security. The adoption of open source and the ineffectiveness of traditional
testing tools for identifying vulnerable components means a changing attack surface and a wider
variety of testing tools.

From the security professional’s perspective, the old approach of a separate security testing team
using static or dynamic analysis on near-complete applications no longer works. Pressure to deliver
new features faster means security needs to be part of the development process – building security
into the software instead of testing for security at the end of the development lifecycle.

The financial argument for building security early

While testing for vulnerabilities late in the development lifecycle undoubtedly identifies
vulnerabilities, there are two negative consequences. First, since a near-complete version of the
software is required for this testing, vulnerabilities discovered are more difficult and expensive to
remediate. As shown in the graphic, a study by IBM showed that vulnerabilities identified after a
product was released cost 100 times as much to remediate as those identified – and avoided –
during the design phase of the Secure Development Lifecycle (SDLC) and over 15 times as much as
those identified during the coding phase.

Source: IBM Systems Sciences Institute

Earlier Visibility to Vulnerabilities Pays Dividends

ANALYZE IMPLEMENT TEST MAINTAINDESIGN

1x 6.5x 15x 100x

Cost to
 Remediate

3 4

To be clear, this does not mean that if a developer could implement a code change in under a day
during the coding phase, it would take her 2 ½ weeks of work after the software was released.
Vulnerabilities identified post-release involve more resources. There are security personnel who
analyze the vulnerability to determine if it is exploitable and triage meetings involving lots of people
to discuss and prioritize issues. Once the vulnerability is scheduled for remediation, the code must
be refactored, test cases generated, and code retested to confirm the vulnerability was fixed. All of
this time and effort adds up even if the vulnerabilities are from coding errors. If a design flaw results
in a security issue that is not identified until late in the development lifecycle, the costs can be
enormous.

The second challenge with vulnerabilities discovered late in the SDLC is organizational pressure to
release the software. As the SDLC reaches its end, the applications are close to their scheduled
release dates. Taking time to fix issues can result in lost revenue from missed customer
commitments and delayed releases. When the choice is losing revenue or shipping vulnerable
software (with a plan to remediate in a future release) the latter
will often prevail.

Solving the Developer’s Dilemma

Preventing vulnerabilities is better than fixing them, and there are many security activities
organizations can perform to identify security issues early in the development lifecycle.

Building secure software is simplified by understanding the threats software faces and
implementing secure coding policies to mitigate those threats. Traditional threat modeling can also
identify threats, but it can be a very time-consuming process that can’t be scaled.

But, it doesn’t have to be this way, most threats are inherent to the software’s technical stack which
can be mitigated through proven strategies.

Automated threat modeling with SD Elements scales the process without adding additional security
resources. SD Elements identifies foundational threats in an application’s technology stack,
including the programming language and frameworks, the deployment environment for the
application, and internal policies or regulatory standards to which the application is subject to. SD
Elements then provides controls for the threats or standards and translates those into specific
activities for developers and security teams, including test plans for validating the implementation of
those controls. This provides security, DevOps, and non-security functions with consistent guidance
on how to build secure software without slowing down development. SD Elements covers all aspects
of the SDLC including configuration of the application infrastructure, risk assessments, and
compliance and privacy controls.

Go Fast. Stay Safe.

Testing for security is different from building secure software. The former is reactive and produces
erratic schedules while the latter is process-driven and predictable. While security testing is an
important step in any SDLC, proper planning anticipates security issues and allows organizations to
avoid common vulnerabilities and weaknesses. This means that security testing is primarily
validating that prescribed controls were implemented correctly instead of acting as a primary
vulnerability discovery activity.

The result is a balance between speed and security. SD Elements allows companies to build products
nearly as fast as if they were being built without any security or compliance at all and as safely as if it
were built under the guidance of human experts. SD Elements helps organizations lower risk across
all applications and enforce security policies without adding resources.

REQUIREMENTS DESIGN CODE TEST RELEASE

• Establish Security
Requirements

• Create
Quality Gates

• Risk Assessments

• Establish Design
Requirements

• Analyze Attack
Surface

• Threat Modelling

• Use
Approved Tools

• Deprecate Unsafe
Functions

• Static Analysis

• Dynamic Analysis

• Fuzz Testing

• Attack Surface
Review

• Incident
Response Plan

• Final Security
Review

• Release Archive

Relative Cost to Remediate Bugs 100x

15x6.5x1x0x

Source: Filling your Appsec Toolbox. Which Tools, When to Use Them, and Why - Michael Pittenger

3 4

To be clear, this does not mean that if a developer could implement a code change in under a day
during the coding phase, it would take her 2 ½ weeks of work after the software was released.
Vulnerabilities identified post-release involve more resources. There are security personnel who
analyze the vulnerability to determine if it is exploitable and triage meetings involving lots of people
to discuss and prioritize issues. Once the vulnerability is scheduled for remediation, the code must
be refactored, test cases generated, and code retested to confirm the vulnerability was fixed. All of
this time and effort adds up even if the vulnerabilities are from coding errors. If a design flaw results
in a security issue that is not identified until late in the development lifecycle, the costs can be
enormous.

The second challenge with vulnerabilities discovered late in the SDLC is organizational pressure to
release the software. As the SDLC reaches its end, the applications are close to their scheduled
release dates. Taking time to fix issues can result in lost revenue from missed customer
commitments and delayed releases. When the choice is losing revenue or shipping vulnerable
software (with a plan to remediate in a future release) the latter
will often prevail.

Solving the Developer’s Dilemma

Preventing vulnerabilities is better than fixing them, and there are many security activities
organizations can perform to identify security issues early in the development lifecycle.

Building secure software is simplified by understanding the threats software faces and
implementing secure coding policies to mitigate those threats. Traditional threat modeling can also
identify threats, but it can be a very time-consuming process that can’t be scaled.

But, it doesn’t have to be this way, most threats are inherent to the software’s technical stack which
can be mitigated through proven strategies.

Automated threat modeling with SD Elements scales the process without adding additional security
resources. SD Elements identifies foundational threats in an application’s technology stack,
including the programming language and frameworks, the deployment environment for the
application, and internal policies or regulatory standards to which the application is subject to. SD
Elements then provides controls for the threats or standards and translates those into specific
activities for developers and security teams, including test plans for validating the implementation of
those controls. This provides security, DevOps, and non-security functions with consistent guidance
on how to build secure software without slowing down development. SD Elements covers all aspects
of the SDLC including configuration of the application infrastructure, risk assessments, and
compliance and privacy controls.

Go Fast. Stay Safe.

Testing for security is different from building secure software. The former is reactive and produces
erratic schedules while the latter is process-driven and predictable. While security testing is an
important step in any SDLC, proper planning anticipates security issues and allows organizations to
avoid common vulnerabilities and weaknesses. This means that security testing is primarily
validating that prescribed controls were implemented correctly instead of acting as a primary
vulnerability discovery activity.

The result is a balance between speed and security. SD Elements allows companies to build products
nearly as fast as if they were being built without any security or compliance at all and as safely as if it
were built under the guidance of human experts. SD Elements helps organizations lower risk across
all applications and enforce security policies without adding resources.

REQUIREMENTS DESIGN CODE TEST RELEASE

• Establish Security
Requirements

• Create
Quality Gates

• Risk Assessments

• Establish Design
Requirements

• Analyze Attack
Surface

• Threat Modelling

• Use
Approved Tools

• Deprecate Unsafe
Functions

• Static Analysis

• Dynamic Analysis

• Fuzz Testing

• Attack Surface
Review

• Incident
Response Plan

• Final Security
Review

• Release Archive

Relative Cost to Remediate Bugs 100x

15x6.5x1x0x

Source: Filling your Appsec Toolbox. Which Tools, When to Use Them, and Why - Michael Pittenger

Author; Michael Pittenger
Copyright © 2020 Security Compass. Updated July 2020.

TORONTO

390 Queens Quay W
2nd Floor
Toronto, Ontario
Canada M5V 3A6

GLOBAL HEADQUARTERS

1 Yonge Street
Suite 1801
Toronto, Ontario
Canada M5E 1W7

NEW JERSEY

621 Shrewsbury Avenue
Suite 215
Shrewsbury, New Jersey
USA 07702

CALIFORNIA

1001 Bayhill Drive
2nd Floor
San Bruno, California
USA 94066

INDIA

#4.07
4th Floor, Statesman House
Barakhamba Road, New Delhi
India 110001

OFFICES

Security Compass, a leading provider of cybersecurity
solutions and advisory services, enables organizations to
adopt balanced development automation for rapid and
secure application development. With their flagship product,
SD Elements, the company helps automate significant
portions of proactive manual processes for security and
compliance that improves time to market for new
technology. In addition, they offer advisory services on how
organizations can embrace emerging technologies like cloud
to strengthen their security posture. Security Compass is the
trusted solution provider to leading financial organizations,
technology enablers, and renowned global brands. The
company is headquartered in Toronto, with offices in the U.S.
and India. Follow Security Compass on Twitter
@securitycompass or visit them at securitycompass.com to
learn more.

1.888.777.2211
info@securitycompass.com
www.securitycompass.com

@SECURITYCOMPASS

SECURITY COMPASS

https://twitter.com/securitycompass
https://securitycompass.com/
http://www.securitycompass.com
https://twitter.com/securitycompass
https://www.linkedin.com/company/security-compass

